October 23, 2017

Language necessarily contains human biases, and so will machines trained on language corpora

I have a new draft paper with Aylin Caliskan-Islam and Joanna Bryson titled Semantics derived automatically from language corpora necessarily contain human biases. We show empirically that natural language necessarily contains human biases, and the paradigm of training machine learning on language corpora means that AI will inevitably imbibe these biases as well.

Specifically, we look at “word embeddings”, a state-of-the-art language representation used in machine learning. Each word is mapped to a point in a 300-dimensional vector space so that semantically similar words map to nearby points.

We show that a wide variety of results from psychology on human bias can be replicated using nothing but these word embeddings. We primarily look at the Implicit Association Test (IAT), a widely used and accepted test of implicit bias. The IAT asks subjects to pair concepts together (e.g., white/black-sounding names with pleasant or unpleasant words) and measures reaction times as an indicator of bias. In place of reaction times, we use the semantic closeness between pairs of words.

In short, we were able to replicate every single result that we tested, with high effect sizes and low p-values.

These include innocuous, universal associations (flowers are associated with pleasantness and insects with unpleasantness), racial prejudice (European-American names are associated with pleasantness and African-American names with unpleasantness), and a variety of gender stereotypes (for example, career words are associated with male names and family words with female names).

But we go further. We show that information about the real world is recoverable from word embeddings to a striking degree. The figure below shows that for 50 occupation words (doctor, engineer, …), we can accurately predict the percentage of U.S. workers in that occupation who are women using nothing but the semantic closeness of the occupation word to feminine words!

These results simultaneously show that the biases in question are embedded in human language, and that word embeddings are picking up the biases.

Our finding of pervasive, human-like bias in AI may be surprising, but we consider it inevitable. We mean “bias” in a morally neutral sense. Some biases are prejudices, which society deems unacceptable. Others are facts about the real world (such as gender gaps in occupations), even if they reflect historical injustices that we wish to mitigate. Yet others are perfectly innocuous.

Algorithms don’t have a good way of telling these apart. If AI learns language sufficiently well, it will also learn cultural associations that are offensive, objectionable, or harmful. At a high level, bias is meaning. “Debiasing” these machine models, while intriguing and technically interesting, necessarily harms meaning.

Instead, we suggest that mitigating prejudice should be a separate component of an AI system. Rather than altering AI’s representation of language, we should alter how or whether it acts on that knowledge, just as humans are able to learn not to act on our implicit biases. This requires a long-term research program that includes ethicists and domain experts, rather than formulating ethics as just another technical constraint in a learning system.

Finally, our results have implications for human prejudice. Given how deeply bias is embedded in language, to what extent does the influence of language explain prejudiced behavior? And could transmission of language explain transmission of prejudices? These explanations are simplistic, but that is precisely our point: in the future, we should treat these as “null hypotheses’’ to be eliminated before we turn to more complex accounts of bias in humans.