March 20, 2018

Archives for January 2004

Report Critical of Internet Voting

Four respected computer scientists, members of a government-commissioned study panel, have published a report critical of SERVE, a proposed system to let overseas military people vote in elections via a website. (Links: the report itself; John Schwartz story at N.Y. Times; Dan Keating story at Washington Post.) The report’s authors are David Jefferson, Avi Rubin, Barbara Simons, and David Wagner. The problem is not in the design of the voting technology itself, but in the simple fact that it is built on ordinary PCs and the Internet, leaving it open to all of the standard security attacks that ordinary systems face:

The real barrier to success is not a lack of vision, skill, resources, or dedication; it is the fact that, given the current Internet and PC security technology, and the goal of a secure, all-electronic remote voting system, the [program] has taken on an essentially impossible task. There really is no good way to build such a voting system without a radical change in overall architecture of the Internet and the PC, or some unforeseen security breakthrough.

SERVE advocates have two reponses. The first is simple stonewalling (for example, saying “We have addressed all of those problems”, which is just false). I’ll ignore the stonewalling. The second response, which does have some force, says that SERVE is worth pursuing as an experiment. An experiment would have some value in understanding user-interface issues relating to e-voting; and the security risk would be acceptable as long as the experiment was small.

The authors of the report disagree, because they worry that the “experiment” would not be an experiment at all but just the first phase of deployment of a manifestly insecure system. If an experiment is done, and no fraud occurs – or at least no fraud is detected – this might be taken as showing that the system is secure, which it clearly is not.

This reminds me of an analogy used by the physicist Richard Feynman to criticize NASA’s safety culture after the Challenger space shuttle accident. (Feynman served on the Challenger commission, and famously demonstrated the brittleness of the rubber O-ring material by dunking it in his glass of ice water during a hearing.) Feynman likened NASA to a man playing Russian Roulette. The man spins the cylinder, puts the gun to his head, and pulls the trigger. Click; he survives. “Aha!” the man says, “This must be safe.”

UPDATE (Saturday, January 24): The Washington Post site has a chat with Avi Rubin, one of the report’s authors.

UPDATE (Thursday, February 6): The DoD has decided not to use SERVE in the November 2004 elections.

Bio Analogies in Computer Security

Every so often, somebody gets the idea that computers should detect viruses in the same way that the human immune system detects bio-viruses. Faced with the problem of how to defend against unexpected computer viruses, it seems natural to emulate the body’s defenses against unexpected bio-viruses, by creating a “digital immune system.”

It’s an enticing idea – our immune systems do defend us well against the bio-viruses they see. But if we dig a bit deeper, the analogy doesn’t seem so solid.

The human immune system is designed to stave off viruses that arose by natural evolution. Confronted by an engineered bio-weapon, our immune systems don’t do nearly so well. And computer viruses really are more like bio-weapons than like evolved viruses. Computer viruses, like bio-weapons, are designed by people who understand how the defensive systems work, and are engineered to evade the defenses.

As far as I can tell, a “digital immune system” is just a complicated machine learning algorithm that tries to learn how to tell virus code apart from nonvirus code. To succeed, it must outperform the other machine learning methods that are available. Maybe a biologically inspired learning algorithm will turn out to be the best, but that seems unlikely. In any case, such an algorithm must be justified by performance, and not merely by analogy.

Searching for Currency-Detection Software

Richard M. Smith observes that several products known to detect images of currency refer users to, a site that explains various countries’ laws about use of currency images. It seems a good bet that any software containing that URL has some kind of currency detection feature.

So you can look for currency-detecting software on your own computer. Just search the contents of your computer for the character string “”, and see if you find that string in any software such as an application or a printer driver.

Richard reports finding the string in drivers for the following printers: HP 130, HP 230, HP 7150, HP 7345, HP 7350, and HP 7550.

Go ahead, try it yourself. If you find anything, post a comment here with the details.