February 21, 2018

Ninth Circuit Ruling in MDY v. Blizzard

The Ninth Circuit has ruled on the MDY v. Blizzard case, which involves contract, copyright, and DMCA claims. As with the district court ruling, I’ll withhold comment due to my involvement as an expert in the case, but the decision may be of interest to FTT readers.

[Editor: The EFF has initial reactions here. Techdirt also has an overview.]

Best Practices for Government Datasets: Wrap-Up

[This is the fifth and final post in a series on best practices for government datasets by Harlan Yu and me. (previous posts: 1, 2, 3, 4)]

For our final post in this series, we’ll discuss several issues not touched on by earlier posts, including data signing and the use of certain non-text file formats. The relatively brief discussions of these topics should not be interpreted as an indicator of their importance. The topics simply did not fit cleanly into earlier posts.

One significant omission from earlier posts is the issue of data signing with digital signatures. Before discussing this issue, let’s briefly discuss what a digital signature is. Suppose that you want to email me an IOU for $100. Later, I may want to prove that the IOU came from you—it’s of little value if you can claim that I made it up. Conversely, you may want the ability to prove whether the document has been altered. Otherwise, I could claim that you owe me $100,000.

Digital signatures help in proving the origin and authenticity of data. These signatures require that you create two related big numbers, known as keys: a private signing key (known only by you) and a public verification key. To generate a digital signature, you plug the data and your signing key into a complicated formula. The formula spits out another big number known a digital signature. Given the signature and your data, I can use the verification key to prove that the data came unmodified from you. Similarly, nobody can credibly sign modified data without your signing key—so you should be very careful to keep this key a secret.

Developers may want to ensure the authenticity of government data and to prove that authenticity to users. At first glance, the solution seems to be a simple application of digital signatures: agencies sign their data, and anyone can use the signatures to authenticate an agency’s data. In spite of their initially steep learning curve, tools like GnuPG provide straightforward file signing. In practice, the situation is more complicated. First, an agency must decide what data to sign. Perhaps a dataset contains numerous documents. Developers and other users may want signatures not only for the full dataset but also for individual documents in it.

Once an agency knows what to sign, it must decide who will perform the signing. Ideally, the employee producing the dataset would sign it immediately. Unfortunately, this solution requires all such employees to understand the signature tools and to know the agency’s signing key. Widespread distribution of the signing key increases the risk that it will be accidentally revealed. Therefore, a central party is likely to sign most data. Once data is signed, an agency must have a secure channel for delivering the verification key to consumers of the data—users cannot confirm the authenticity of signed data without this key. While signing a given file with a given key may not be hard, surrounding issues are more tricky. We offer no simple solution here, but further discussion of this topic between government agencies, developers, and the public could be useful for all parties.

Another issue that earlier posts did not address is the use of non-text spreadsheet formats, including Microsoft Excel’s XLS format. These formats can sometimes be useful because they allow the embedding of formulas and other rich information along with the data. Unfortunately, these formats are far more complex than raw text formats, so they present a greater challenge for automated processing tools. A comma-separated value (CSV) file is a straightforward text format that contains values separated by line breaks and commas. It provides an alternative to complicated spreadsheet formats. For example, the medal count from the 2010 Winter Olympics in CSV would be:


Fortunately, the release of data in one format does not preclude its release in another format. Most spreadsheet programs provide an option to save data in CSV form. Agencies should release spreadsheet data in a textual format like CSV by default, but an agency should feel free to also release the data in XLS or other formats.

Similarly, agencies will sometimes release large files or groups of files in a compressed or bundled format (for example, ZIP, TAR, GZ, BZ). In these cases, agencies should prominently specify where users can freely obtain software and instructions for extracting the data. Because so many means of compressing and bundling files exist, agencies should not presume that the necessary tools and steps are obvious from the data files themselves.

The rules suggested throughout this series should be seen as best practices rather than hard-and-fast rules. We are still in the process of fleshing out several of these ideas ourselves, and exceptional cases sometimes justify exceptional treatment. In unusual cases, an agency may need to deviate from traditional best practices, but it should carefully consider (and perhaps document) its rationale for doing so. Rules are made to be broken, but they should not be broken for mere expedience.

Our hope is that this series will provide agencies with some points to consider prior to releasing data. Because of Data.gov and the increasing traction of openness and transparency initiatives, we expect to see many more datasets enter the public domain in the coming years. Some agencies will approach the release of bulk data with minimal previous experience. While this poses a challenge, it also present an opportunity for committed agencies to institute good practices early, before bad habits and poor-quality legacy datasets can accumulate. When releasing new datasets, agencies will make numerous conscious and unconscious choices that impact developers. We hope to help agencies understand developers’ challenges when making these choices.

After gathering input from the community, we plan to create a technical report based on this series of posts. Thanks to numerous readers for insightful feedback; your comments have influenced and clarified our thoughts. If any FTT readers inside or outside of government have additional comments about this post or others, please do pass them along.

Correcting Errors and Making Changes

[This is the fourth post in a series on best practices for government datasets by Harlan Yu and me. (previous posts: 1, 2, 3)]

Even cautiously edited datasets sometimes contain errors, and even meticulously produced schemas require refinement as circumstances change. While errors or changes create inconvenience for developers, most developers appreciate and prepare for their inevitability. Agencies should strive to do the same. A well-developed strategy for fixes and changes can ease their burden on both developers and agencies.

When agencies release data, developers ideally will interact with it in creative new ways. Given datasets containing megabytes to gigabytes of data, novel uses will reveal previously unnoticed errors. Knowledge of these errors benefits the agency as well as other developers using the data, so agencies should take steps to encourage error reporting. Labels in a dataset allow developers to specify errors efficiently and unambiguously. An easy-to-find channel for reporting errors, such as a prominently provided email address or web form, is also critical. Tracking down the contact information of the person responsible for a dataset can be difficult, and a well-known channel reduces this barrier to feedback.

Upon learning of an issue in a dataset, an agency should correct the problem and release the corrected dataset in a timely manner. An important fact to keep in mind when correcting data is that numerous developers may have already downloaded and begun using the old flawed version. For these developers, even a minor modification can cause major issues if not done carefully. Agencies should think about two things: how they will make developers aware that the dataset has been modified and how they will change the dataset itself. The first point is sometimes ignored in spite of its importance. Not only should datasets contain version information, but agencies should also notify developers when the data that they rely on has changed. In particular, agencies should allow developers to subscribe to an email list or an RSS feed for specific datasets that details updates in a well-structured manner. These updates should clearly specify the dataset and version affected, a location where the updated dataset can be found, and a description of the changes to the dataset. When possible, these changes should be specified via a formal, structured description—for example, a diff output—as well as a brief prose explanation.

Correction of dataset contents should proceed cautiously. Suppose that an application allows user to comment on parts of a document. If labels are in a dataset are not maintained consistently across versions, the developer may need to painstakingly map comments from the old data to the corresponding parts of the new dataset. Issues like this can be mitigated through several practices. First, an agency should seek to preserve labels across versions of a dataset when possible (alternatively, in some cases an agency might wish to change the labels but provide a mapping to assist developers). For example, a dataset might aggregate numerous documents, and a minor change in one document should not necessarily change the labels for the other documents. Recall the side note from our previous post that labels should be separate from ordering information. Corrections to a dataset may add, remove, or reorder items. Detaching order from labels can help agencies ensure label consistency across dataset versions. In addition, the last post and its comments discussed whether agencies should provide a label that is separate from its internally used agency label. This separation allows labels to remain consistent even when Subsection X becomes Section Y based on the internal agency labels. Note that these points about consistent labeling can be useful whenever a dataset could have multiple versions: for example, consistent labeling might be beneficial across various versions of a bill.

Similarly, the structure that agencies use for datasets, the locations where the datasets are hosted, and other details of a dataset sometimes must change. Suppose that an agency releases various statistics each month. When the agency is asked to provide a new statistic, the new data may necessitate changes to the XML schema. Alternatively, the agency may decide to host data at the address “http://www.agency.gov/YEAR/MONTH/data.xml” rather than “http://www.agency.gov/MONTH-YEAR/data.xml,” causing issues for automated tools that periodically check for and download new data. To reduce the adverse impact of these changes on developers, agencies should provide detailed notice of the changes as early as possible. Early notice gives developers time to modify their tools. These notifications can occur via an email list or RSS feed providing details of the changes in a clear, consistent format.

The possibility of changes and their impact on developers should be taken into account at all stages of the data production process. Suppose an agency adds an element to a schema that specifies a unique individual, but the schema may someday need to specify a corporation instead. Although the agency should not speculatively add unnecessary elements to the schema, it should be mindful of possible changes when designing the rest of the schema. Various design choices may minimize the impact of a change if necessary later. Agencies should also avoid the urge to alter a schema dramatically each time it requires a minor change. A major overhaul—even when done to clean up the schema—may require equally dramatic changes in tools utilizing the data. To ensure that developers notice changes to XML schemas, both schema files and datasets should contain a prominent schema version number. If an agency changes the location where data is hosted, it should consider temporarily using aliases so that requests using old addresses automatically take you to the correct data. Once the old addresses are phased out, agencies should use a standard HTTP 404 status code to indicate that the requested data was not found at the specified location. Simply supplying a “Not Found” page without this standard code could make life harder for developers whose automated tools must instead parse this page.

When making changes, agencies should consider soliciting input directly from developers. Because the preferences of developers might not be obvious, this input can lead to choices that help developers without increasing the burden on agencies. In fact, developers may even come up with ideas that make life easier for an agency.

Our next and final post in this series will discuss a handful of additional issues for agencies to consider.