August 29, 2016

avatar

A response to the National Association of Secretaries of State

NASS logo
Election administration in the United States is largely managed state-by-state, with a small amount of Federal involvement. This generally means that each state’s chief election official is that state’s Secretary of State. Their umbrella organization, the National Association of Secretaries of State, consequently has a lot of involvement in voting issues, and recently issued a press release concerning voting system security that was remarkably erroneous. What follows is a point-by-point commentary on their press release.

To date, there has been no indication from national security agencies to states that any specific or credible threat exists when it comes to cyber security and the November 2016 general election.

Unfortunately, we now know that it appears that Russia broke into the DNC’s computers and leaked emails with clear intent to influence the U.S. presidential election (see, e.g., the New York Times’s article on July 26: “Why Security Experts Think Russia was Behind the DNC Breach”). It’s entirely reasonable to extrapolate from this that they may be willing to conduct further operations with the same goals, meaning that it’s necessary to take appropriate steps to mitigate against such attacks, regardless of the level of specificity of available intel.

However, as a routine part of any election cycle, Secretaries of State and their local government counterparts work with federal partners, such as the U.S. Election Assistance Commission (EAC) and the National Institute of Standards and Technology (NIST), to maintain rigorous testing and certification standards for voting systems. Risk management practices and controls, including the physical handling and storage of voting equipment, are important elements of this work.

Expert analyses of current election systems (largely conducted ten years ago in California, Ohio, and Florida) found a wide variety of security problems. While some states have responded to these issues by replacing the worst paperless electronic voting systems, other states, including several “battleground” states, continue to use unacceptably insecure systems.

State election offices also proactively utilize election IT professionals and security experts to regularly review, identify and address any vulnerabilities with systems, including voter registration databases and election night reporting systems (which display the unofficial tallies that are ultimately verified via statewide canvassing).

The implication here is that all state election officials have addressed known vulnerabilities. This is incorrect. While some states have been quite proactive, other states have done nothing of the sort.

A national hacking of the election is highly improbable due to our unique, decentralized process.

Security vulnerabilities have nothing to do with probabilities. They instead have to do with a cost/benefit analysis on the part of the attacker. An adversary doesn’t have to attack all 50 states. All they have to do is tamper with the “battleground” states where small shifts in the vote can change the outcome for the whole state.

Each state and locality conducts its own system of voting, complete with standards and security requirements for equipment and software. Most states publicly conduct logic and accuracy testing of their machines prior to the election to ensure that they are working and tabulating properly, then they are sealed until Election Day to prevent tampering.

So-called “logic and accuracy testing” varies from location to location, but most boil down to casting a small number of votes for each candidate, on a handful of machines, and making sure they’re all there in a mock tally. Similarly, local election officials will have procedures in place to make sure machines are properly “zeroed”. Computer scientists refer to these as “sanity tests”, in that if the system fails, then something is obviously broken. If these tests pass, they say nothing about the sort of tampering that a sophisticated nation-state adversary might conduct.

Some election officials conduct more sophisticated “parallel testing”, where some voting equipment is pulled out of general service and is instead set up in a mock precinct, on election day, where mock voters cast seemingly real ballots. These machines would have a harder time distinguishing whether they were in “test” versus “production” conditions. But what happens if the machines fail the parallel test? By then, the election is over, the voters are gone, and there’s potentially no way to reconstruct the intent of the voters.

Furthermore, electronic voting machines are not Internet-based and do not connect to each other online.

This is partially true. Electronic voting systems do connect to one another through in-precinct local networks or through the motion of memory cards of various sorts. They similarly connect to election management systems before the start of the election (when they’re loaded with ballot definitions) and after the end of the election (for backups, recounts, inventory control, and/or being cleared prior to subsequent elections). All of these “touch points” represent opportunities for malware to cross the “air gap” boundaries. We built attacks like these a decade ago as part of the California Top to Bottom Review, showing how malware could spread “virally” to an entire county’s fleet of voting equipment. Attacks like these require a non-trivial up-front engineering effort, plus additional effort for deployment, but these efforts are well within the capabilities of a nation-state adversary.

Following the election, state and local jurisdictions conduct a canvass to review vote counting, ultimately producing the election results that are officially certified. Post-election audits help to further guard against deliberate manipulation of the election, as well as unintentional software, hardware or programming problems.

Post-election audits aren’t conducted at all in some jurisdictions, and would likely be meaningless against the sort of adversary we’re talking about. If a paperless electronic voting system was hacked, there might well be forensic evidence that the attackers left behind, but such evidence would be a challenge to identify quickly, particularly in the charged atmosphere of a disputed election result.

We look forward to continued information-sharing with federal partners in order to evaluate cyber risks, and respond to them accordingly, as part of ongoing state election emergency preparedness planning for November.

“Emergency preparedness” is definitely the proper way to consider the problem. Just as we must have contingency plans for all sorts of natural phenomena, like hurricanes, we must also be prepared for man-made phenomena, where we might be unable to reconstruct an election tally that accurately represents the will of the people.

The correct time to make such plans is right now, before the election. Since it’s far too late to decommission and replace our insecure equipment, we must instead plan for rapid responses, such as quickly printing single-issue paper ballots, bringing voters back to the polls, and doing it all over again. If such plans are made now, their very existence changes the cost/benefit equation for our adversaries, and will hopefully dissuade these adversaries from acting.

avatar

Voting technology issues in Virginia on election day

I spent Election Day in one of the command centers for the 866-OUR-VOTE hotline. The command center was accepting calls from New Jersey, Maryland, DC, and Virginia, but 95% of the technology issues were from Virginia. I was the designated “technology guy”, so pretty much everything that came through that center came to me. This gave me a pretty good perspective on the scope of issues. (I don’t know about the non-technology issues, although I heard discussions of issues like demanding more ID than is required, voter intimidation, etc.)

Following is a summary of what I saw. What’s most interesting is that if you divide things into “easy to solve” and “hard to solve”, the “easy to solve” ones are all in places using optical scan, and the “hard to solve” are all in places using DREs (colloquially known as “touch screens”, although not all of them are).
[Read more…]