The big e-voting story from November’s election was in Sarasota, Florida, where a congressional race was decided by about 400 votes, with 18,412 undervotes. That’s 18,412 voters who cast votes in other races but not, according to the official results, in that congressional race. Among voters who used the ES&S iVotronic machines – that is, non-absentee voters in Sarasota County – the undervote rate was about 14%. Something went very wrong. But what?
Since the election there have been many press releases, op-eds, and blog posts about the undervotes, not to mention some lawsuits and scholarly studies. I want to spend the rest of the week dissecting the Sarasota situation, which I have been following closely. I’m doing this now for two reasons: (1) enough time has passed for the dust to settle a bit, and (2) I’m giving a joint talk on the topic next week and I want to work through some thoughts.
There’s no doubt that something about the iVotronic caused the undervotes. Undervote rates differed so starkly in the same race between iVotronic and non-iVotronic voters that the machines must be involved somehow. (For example, absentee voters had a 2.5% undervote rate in the congressional race, compared to 14% for iVotronic voters.) Several explanations have been proposed, but only two are at all plausible: ballot design and machine malfunction.
The ballot design theory says that the ballot offered to voters on the iVotronic’s screen was misdesigned in a way that caused many voters to miss that race. Looking at screenshots of the ballot, one can see how voters might miss the congressional race at the top of the second page. (Depressingly, some sites show a misleading photo that the photographer angled and lit to make the misdesign look worse than it really was.) It’s very plausible that this kind of problem caused some undervotes; and that is consistent with the reports of many voters that the machine did not show them the congressional race.
It’s one thing to say that ballot design could have caused some undervotes, but it’s another thing entirely to say it was the sole cause of so elevated an undervote rate. Each voter, before finalizing his vote, was shown a clearly designed confirmation screen listing his choices and clearly showing a no-candidate-selected message for the congressional race. Did so many voters miss that too? And what about the many voters who reported choosing a candidate in the congressional race, only to have the no-candidate-selected message show up on the confirmation screen anyway?
The malfunction theory postulates a problem or malfunction with the voting machines that caused votes not to be recorded. There are many types of problems that could have caused lost votes. The best way to evaluate the malfunction theory is to conduct a careful and thorough study of the machines themselves. In the next entry I’ll talk about the efforts that have been made toward that end. For now, suffice it to say that no suitable study is available to us.
If we had a voter-verified paper trail, we could immediately tell which theory is correct, by comparing the paper and electronic records. If the voter-verified paper records show the same high undervote race, then the ballot design theory is right. If the paper and electronic records show significantly different undervote rates, then something is wrong with the machines. But of course the advocates of paperless voting argued that paper trails were unnecessary – while also arguing that touchscreen systems reduce undervotes.
Several studies have tried to use statistical analyses of undervote patterns in different races, precincts, and machines to evaluate the two theories. Frisina, Herron, Honaker, and Lewis say the data support the ballot design theory; Mebane and Dill say the data point to malfunction as a likely cause of at least some of the undervotes. Reading these studies, I can’t reach a clear conclusion.
What would convince me, one way or the other, is a good study of the machines. I’ll talk next time about the fight over whether and how to look at the machines.