April 26, 2018

Archives for 2018

Announcing IoT Inspector: Studying Smart Home IoT Device Behavior

By Noah Apthorpe, Danny Y. Huang, Gunes Acar, Frank Li, Arvind Narayanan, Nick Feamster

An increasing number of home devices, from thermostats to light bulbs to garage door openers, are now Internet-connected. This “Internet of Things” (IoT) promises reduced energy consumption, more effective health management, and living spaces that react adaptively to users’ lifestyles. Unfortunately, recent IoT device hacks and personal data breaches have made security and privacy a focal point for IoT consumers, developers, and regulators.

Many IoT vulnerabilities sound like the plot of a science fiction dystopia. Internet-connected dolls allow strangers to spy on children remotely. Botnets of millions of security cameras and DVRs take down a global DNS service provider. Surgically implanted pacemakers are susceptible to remote takeover.

These security vulnerabilities, combined with the rapid evolution of IoT products, can leave consumers at risk, and in the dark about the risks they face when using these devices. For example, consumers may be unsure which companies receive personal information from IoT appliances, whether an IoT device has been hacked, or whether devices with always-on microphones listen to private conversations.

To shed light on the behavior of smart home IoT devices that consumers buy and install in their homes, we are announcing the IoT Inspector project.

Announcing IoT Inspector: Studying IoT Security and Privacy in Smart Homes

Today, at the Center for Information Technology Policy at Princeton, we are launching an ongoing initiative to study consumer IoT security and privacy, in an effort to understand the current state of smart home security and privacy in ways that ultimately help inform both technology and policy.

We have begun this effort by analyzing more than 50 home IoT devices ourselves. We are working on methods to help scale this analysis to more devices. If you have a particular device or type of device that you are concerned about, let us know. To learn more, visit the IoT Inspector website.

Our initial analyses have revealed several findings about home IoT security and privacy.

[Read more…]

No boundaries for Facebook data: third-party trackers abuse Facebook Login

by Steven Englehardt [0], Gunes Acar, and Arvind Narayanan

So far in the No boundaries series, we’ve uncovered how web trackers exfiltrate identifying information from web pages, browser password managers, and form inputs.

Today we report yet another type of surreptitious data collection by third-party scripts that we discovered: the exfiltration of personal identifiers from websites through “login with Facebook” and other such social login APIs. Specifically, we found two types of vulnerabilities [1]:

  • seven third parties abuse websites’ access to Facebook user data
  • one third party uses its own Facebook “application” to track users around the web.

 

Vulnerability 1: Third parties piggyback on Facebook access granted to websites

Diagram of third-party script accessing Facebook API

When a user clicks “Login with Facebook”, they will be prompted to allow the website they’re visiting to access some of their Facebook profile information [2]. Even after Facebook’s recent moves to lock down the feature, websites can request the user’s email address and  “public profile” (name, age range, gender, locale, and profile photo) without triggering a manual review by Facebook. Once the user allows access, any third-party Javascript embedded in the page, such as tracker.com in the figure above, can also retrieve the user’s Facebook information as if they were the first party [3].

[Read more…]

Ethics Education in Data Science

Data scientists in academia and industry are increasingly recognizing the importance of integrating ethics into data science curricula. Recently, a group of faculty and students gathered at New York University before the annual FAT* conference to discuss the promises and challenges of teaching data science ethics, and to learn from one another’s experiences in the classroom. This blog post is the first of two which will summarize the discussions had at this workshop.

There is general agreement that data science ethics should be taught, but less consensus about what its goals should be or how they should be pursued. Because the field is so nascent, there is substantial room for innovative thinking about what data science ethics ought to mean. In some respects, its goal may be the creation of “future citizens” of data science who are invested in the welfare of their communities and the world, and understand the social and political role of data science therein. But there are other models, too: for example, an alternative goal is to equip aspiring data scientists with technical tools and organizational processes for doing data science work that aligns with social values (like privacy and fairness). The group worked to identify some of the biggest challenges in this field, and when possible, some ways to address these tensions.

One approach to data science ethics education is including a standalone ethics course in the program’s curriculum. Another option is embedding discussions of ethics into existent courses in a more integrated way. There are advantages and disadvantages to both options. Standalone ethics courses may attract a wider variety of students from different disciplines than technical classes alone, which provides potential for rich discussions. They allow professors to cover basic normative theories before diving into specific examples without having to skip the basic theories or worry that students covered them in other course modules. Independent courses about ethics do not necessarily require cooperation from multiple professors or departments, making them easier to organize. However, many worry that teaching ethics separately from technical topics may marginalize ethics and make students perceive it as unimportant. Further, standalone courses can either be elective or mandatory. If elective, they may attract a self-selecting group of students, potentially leaving out other students who could benefit from exposure to the material; mandatory ethics classes may be seen as displacing other technical training students want and need. Embedding ethics within existent CS courses may avoid some of these problems and can also elevate the discourse around ethical dilemmas by ensuring that students are well-versed in the specific technical aspects of the problems they discuss.

Beyond course structure, ethics courses can be challenging for data science faculty to teach effectively. Many students used to more technical course material are challenged by the types of learning and engagement required in ethics courses, which are often reading-heavy. And the “answers” in ethics courses are almost never clear-cut. The lack of clear answers or easily constructed rubrics can complicate grading, since both students and faculty in computer science may be used to grading based on more objective criteria. However, this problem is certainly not insurmountable – humanities departments have dealt with this for centuries, and dialogue with them may illuminate some solutions to this problem. Asking students to complete frequent but short assignments rather than occasional long ones may make grading easier, and also encourages students to think about ethical issues on a more regular basis.

Institutional hurdles can hinder a university’s ability to satisfactorily address questions of ethics in data science. A dearth of technical faculty may make it difficult to offer a standalone course on ethics. A smaller faculty may push a university towards incorporating ethics into existent CS courses rather than creating a new class. Even this, however, requires that professors have the time and knowledge to do so, which is not always the case.

The next blog post will enumerate topics discussed and assignments used in courses that discuss ethics in data science.

Thanks to Karen Levy and Kathy Pham for their edits on a draft of this post.