There’s an interesting dispute between astronomers about who deserves credit for discovering a solar system object called 2003EL61. Its existence was first announced by Spanish astronomers, but another team in the U.S. believes that the Spaniards may have learned about the object due to an information leak from the U.S. team.
The U.S. team’s account appears on their web page and was in yesterday’s NY Times. The short version is that the U.S. team published an advance abstract about their paper, which called the object by a temporary name that encoded the date it had been discovered. They later realized that an obscure website contained a full activity log for the telescope they had used, which allowed anybody with a web browser to learn exactly where the telescope had been pointing on the date of the discovery. This in turn allowed the object’s orbit to be calculated, enabling anybody to point their telescope at the object and “discover” it. Just after the abstract was released, the Spanish team apparently visited the telescope log website; and a few days later the Spanish team announced that they had discovered the object.
If this account is true, it’s clearly a breach of scientific ethics by the Spaniards. The seriousness of the breach depends on other circumstances which we don’t know, such as the possibility that the Spaniards had already discovered the object independently and were merely checking whether the Americans’ object was the same one. (If so, their announcement should have said that the American team had discovered the object independently.)
[UPDATE (Sept. 15): The Spanish team has now released their version of the story. They say they discovered the object on their own. When the U.S. group’s abstract, containing a name for the object, appeared on the Net, the Spaniards did a Google search for the object name. The search showed a bunch of sky coordinates. They tried to figure out whether any of those coordinates corresponded to the object they had seen, but they were unable to tell one way or the other. So they went ahead with their own announcement as planned.
This is not inconsistent with the U.S. team’s story, so it seems most likely to me that both stories are true. If so, then I was too hasty in inferring a breach of ethics, for which I apologize. I should have realized that the Spanish team might have been unable to tell whether the objects were the same.]
When this happened, the American team hastily went public with another discovery, of an object called 2003UB313 which may be the tenth planet in our solar system. This raised the obvious question of why the team had withheld the announcement of this new object for as long as they did. The team’s website has an impassioned defense of the delay:
Good science is a careful and deliberate process. The time from discovery to announcement in a scientific paper can be a couple of years. For all of our past discoveries, we have described the objects in scientific papers before publicly announcing the objects’ existence, and we have made that announcement in under nine months…. Our intent in all cases is to go from discovery to announcement in under nine months. We think that is a pretty fast pace.
One could object to the above by noting that the existence of these objects is never in doubt, so why not just announce the existence immediately upon discovery and continue observing to learn more? This way other astronomers could also study the new object. There are two reasons we don’t do this. First, we have dedicated a substantial part of our careers to this survey precisely so that we can discover and have the first crack at studying the large objects in the outer solar system. The discovery itself contains little of scientific interest. Almost all of the science that we are interested in doing comes from studying the object in detail after discovery. Announcing the existence of the objects and letting other astronomers get the first detailed observations of these objects would ruin the entire scientific point of spending so much effort on our survey. Some have argued that doing things this way “harms science” by not letting others make observations of the objects that we find. It is difficult to understand how a nine month delay in studying an object that no one would even know existed otherwise is in any way harmful to science!
Many other types of astronomical surveys are done for precisely the same reasons. Astronomers survey the skies looking for ever higher redshift galaxies. When they find them they study them and write a scientific paper. When the paper comes out other astronomers learn of the distant galaxy and they too study it. Other astronomers cull large databases such as the 2MASS infrared survey to find rare objects like brown dwarves. When they find them they study them and write a scientific paper. When the paper comes out other astronomers learn of the brown dwarves and they study them in perhaps different ways. Still other astronomers look around nearby stars for the elusive signs of directly detectable extrasolar planets. When they find one they study it and write a scientific paper….. You get the point. This is the way that the entire field of astronomy – and probably all of science – works. It’s a very effective system; people who put in the tremendous effort to find these rare objects are rewarded with getting to be the first to study them scientifically. Astronomers who are unwilling or unable to put in the effort to search for the objects still get to study them after a small delay.
This describes an interesting dynamic that seems to occur in all scientific fields – I have seen it plenty of times in computer science – where researchers withhold results from their colleagues for a while, to ensure that they get a headstart on the followup research. That’s basically what happens when an astronomer delays announcing the discovery of an object, in order to do followup analyses of the object for publication.
The argument against this secrecy is pretty simple: announcing the first result would let more people do followup work, making the followup work both quicker and more complete on average. Scientific discovery would benefit.
The argument for this kind of secrecy is more subtle. The amount of credit one gets for a scientific result doesn’t always correlate with the difficulty of getting the result. If a result is difficult to get but doesn’t create much credit to the discoverer, then there is an insufficient incentive to look for that result. The incentive is boosted if the discoverer gets an advantage in doing followup work, for example by keeping the original result secret for a while. So secrecy may increase the incentive to do certain kinds of research.
Note that there isn’t much incentive to keep low-effort / high-credit research secret, because there are probably plenty of competing scientists who are racing to do such work and announce it first. The incentive to keep secrets is biggest for high-effort / low-credit research which enables low-effort / high-credit followup work. And this is exactly the case where incentives most need to be boosted.
Michael Madison compares the astronomers’ tradeoff between publication and secrecy to the tradeoff an inventor faces between keeping an invention secret, and filing for a patent. As a matter of law, discovered scientific facts are not patentable, and that’s a good thing.
As Madison notes, science does have its own sort of “intellectual property” system that tries to align incentives for the public good. There is a general incentive to publish results for the public good – scientific credit goes to those who publish. Secrecy is sometimes accepted in cases where secret-keeping is needed to boost incentives, but the system is designed to limit this secrecy to cases where it is really needed.
But this system isn’t perfect. As the astronomers note, the price of secrecy is that followup work by others is delayed. Sometimes the delay isn’t too serious – 2003UB313 will still be plodding along in its orbit and there will be plenty of time to study it later. But sometimes delay is a bigger deal, as when an astronomical object is short-lived and cannot be studied at all later. Another example, which arises more often in computer security, is when the discovery is about an ongoing risk to the public which can be mitigated more quickly if it is more widely known. Scientific ethics tend to require at least partial publication in cases like these.
What’s most notable about the scientific system is that it works pretty well, at least within the subject matter of science, and it does so without much involvement by laws or lawyers.