November 23, 2024

Comcast and BitTorrent: Why You Can't Negotiate with a Protocol

The big tech policy news yesterday was Comcast’s announcement that it will stop impeding BitTorrent traffic, but instead will respond to network congestion by slowing traffic from the highest-volume users, regardless of what those users are doing. Comcast also announced a deal with BitTorrent, aimed at developing more effective ways of channeling peer-to-peer traffic through networks.

It may seem natural to respond to a network issue involving BitTorrent by making a deal with BitTorrent – and much of the reporting and commentary has taken that line – but there is something odd about the BitTorrent deal, which only becomes clear when we unpack the difference between the BitTorrent protocol and the BitTorrent company. The BitTorrent protocol is a set of technical rules used by desktop software programs to coordinate the peer-to-peer distribution of files. The company BitTorrent Inc. is just one maker of software that uses the protocol – indeed, it’s a relatively minor player in that market. Most people who use the BitTorrent protocol don’t use software from BitTorrent Inc.

What this means is that changes in BitTorrent Inc’s products won’t have much effect on Comcast’s network. What Comcast needs, if it wants to change conditions in its network, is to change the BitTorrent protocol.

The problem is that you can’t negotiate with a protocol, for the same reason that you can’t negotiate with (say) the English language. You can use the language to negotiate with someone, but you can’t have a negotiation where the other party is the language. You can negotiate with the Queen of England, or English Department at Princeton, or the people who publish the most popular dictionary. But the language itself just isn’t the kind of entity that can make an agreement or have an intention.

This property of protocols – that you can’t get a meeting with them, convince them to change their behavior, or make a deal with them – seems especially challenging to some Washington policymakers. If, as they do, you live in a world driven by meetings and deal-making, a world where problem-solving means convincing someone to change something, then it’s natural to think that every protocol, and every piece of technology, must be owned and managed by some entity.

Engineers sometimes make a similar mistake in thinking about technology markets. We like to think that technologies are designed by engineers, but often it’s more accurate to say that some technology was designed by a market. And where the market is in charge, there is nobody to call when the technology needs to be changed.

Will Comcast and BitTorrent Inc. succeed in improving the BitTorrent protocol? Maybe. But it won’t be enough simply to have a better protocol. They’ll also have to convince the population of BitTorrent users to switch.

UPDATE (April 2): A reader points out that BitTorrent Inc bought uTorrent, one of the popular client programs implementing the BitTorrent protocol. This means that BitTorrent Inc has more leverage to force adoption of new protocol versions than I had thought. Still, I stand by the basic point of the post, that BitTorrent Inc doesn’t have unilateral power to change the protocol.

The Security Mindset and "Harmless Failures"

Bruce Schneier has an interesting new essay about how security people see the world. Here’s a sample:

Uncle Milton Industries has been selling ant farms to children since 1956. Some years ago, I remember opening one up with a friend. There were no actual ants included in the box. Instead, there was a card that you filled in with your address, and the company would mail you some ants. My friend expressed surprise that you could get ants sent to you in the mail.

I replied: “What’s really interesting is that these people will send a tube of live ants to anyone you tell them to.”

Security requires a particular mindset. Security professionals – at least the good ones – see the world differently. They can’t walk into a store without noticing how they might shoplift. They can’t use a computer without wondering about the security vulnerabilities. They can’t vote without trying to figure out how to vote twice. They just can’t help it.

This kind of thinking is not natural for most people. It’s not natural for engineers. Good engineering involves thinking about how things can be made to work; the security mindset involves thinking about how things can be made to fail. It involves thinking like an attacker, an adversary or a criminal. You don’t have to exploit the vulnerabilities you find, but if you don’t see the world that way, you’ll never notice most security problems.

I’ve often speculated about how much of this is innate, and how much is teachable. In general, I think it’s a particular way of looking at the world, and that it’s far easier to teach someone domain expertise – cryptography or software security or safecracking or document forgery – than it is to teach someone a security mindset.

The ant farm story illustrates another aspect of the security mindset. Your first reaction to the might have been, “So what? What’s so harmful about sending a package of ordinary ants to an unsuspecting person?” Even Bruce Schneier, who has the security mindset in spades, doesn’t point to any terrible consequence of misdirecting the tube of ants. (You might worry about the ants’ welfare, but in that case ant farms are already problematic.) If you have the security mindset, you’ll probably find the possibility of ant misdirection to be irritating; you’ll feel that something should have been done about it; and you’ll probably file it away in your mental attic, in case it becomes relevant later.

This interest in “harmless failures” – cases where an adversary can cause an anomalous but not directly harmful outcome – is another hallmark of the security mindset. Not all “harmless failures” lead to big trouble, but it’s surprising how often a clever adversary can pile up a stack of seemingly harmless failures into a dangerous tower of trouble. Harmless failures are bad hygiene. We try to stamp them out when we can.

To see why, consider the donotreply.com email story that hit the press recently. When companies send out commercial email (e.g., an airline notifying a passenger of a flight delay) and they don’t want the recipient to reply to the email, they often put in a bogus From address like . A clever guy registered the domain donotreply.com, thereby receiving all email addressed to donotreply.com. This included “bounce” replies to misaddressed emails, some of which contained copies of the original email, with information such as bank account statements, site information about military bases in Iraq, and so on. Misdirected ants might not be too dangerous, but misdirected email can cause no end of trouble.

The people who put donotreply.com email addresses into their outgoing email must have known that they didn’t control the donotreply.com domain, so they must have thought of any reply messages directed there as harmless failures. Having gotten that far, there are two ways to avoid trouble. The first way is to think carefully about the traffic that might go to donotreply.com, and realize that some of it is actually dangerous. The second way is to think, “This looks like a harmless failure, but we should avoid it anyway. No good can come of this.” The first way protects you if you’re clever; the second way always protects you.

Which illustrates yet another part of the security mindset: Don’t rely too much on your own cleverness, because somebody out there is surely more clever and more motivated than you are.

Sequoia's Explanation, and Why It's Not the Whole Story

I wrote yesterday about discrepancies in the results reported by Sequoia AVC Advantage voting machines in New Jersey.

Sequoia issued a memo giving their explanation for what might have happened. Here’s the relevant part:

During a primary election, the “option switches” on the operator panel must be used to activate the voting machine. The operator panel has a total of 12 buttons numbered 1 through 12. Each party participating in the primary election is assigned one of the option switch buttons. The poll worker presses a party option switch button based on the voter authorization slip given to the voter after signing the poll book, and then the poll worker presses the green “Activate” button. This action causes that party’s contests to be activated on the ballot face inside the voting booth.

Let’s assume the Democrat party is assigned option switch 6 while the Republican Party is assigned options switch 12. If a Democrat voter arrives, the poll worker presses the “6” button followed by the green “Activate” button. The Democrat contests are activated and the voter votes the ballot. For a Republican voter, the poll worker presses the “12” button followed by the green “Activate” button, which then activates the Republican contests and the voter votes the ballot. This is the correct and proper method of machine activation when using option switches.

However, we have found that when a poll worker selects the lower of the two assigned selection codes, followed by pressing an unused selection code and then pressing the green “Activate” button, the higher numbered party on the operator panel has its contests activated instead while the selection code button for the original party stays active on the operator panel.

Using the above example with the Democrat Party as option switch 6 and the Republican Party as option switch 12, the poll worker presses button 6 for Democrat. The red light next to button number 6 lights up and the operator panel display will show DEM. The poll worker then presses any unused option switch. The red light stays lit next to option switch 6 and the display still says DEM. Now the poll worker presses the green “Activate” button. The red light stays lit next to button number 6, but the operator panel display now says REP and the ballot in the voting booth will activate the Republican party contests.

In each and every case where a machine displays the party turnout issue at the close of the polls, this is the situation that would have caused it, and it can be duplicated on any machine. In addition, for this situation to have occurred, the voter that was in the voting booth at the time of the poll workers action would have voted the opposite party ballot instead of telling the poll worker that the incorrect ballot was activated and the machine would not allow them to vote the party they intended. If they had informed the poll worker, they could have made the party selection change and the voter would have then voted the correct ballot style.

Several points are in order.

First, it’s obvious from this description, and from the fact that this happened on so many machines across the state, that even if Sequoia’s explanation is entirely correct, there was some kind of engineering error on Sequoia’s part that caused the machines to misbehave. Sequoia has tried to paint the anomalies as poll worker error, but that’s not plausible in light of Sequoia’s own explanation.

Consider the scenario described above: there is a moment when the red light next to the DEM button is lit, the operator panel displays DEM, then the poll worker presses the Activate button – and the Republican ballot is activated. No competent engineer would design a system to work that way.

No competent engineer would design this system to ever display REP in the operator panel while simultaneously lighting only the DEM light.

No competent engineer would design this system to ever activate the Republican ballot when the poll worker had pressed the DEM button but had not pressed the REP button.

Sequoia’s own explanation makes clear that they made an engineering error that caused the voting machine to behave incorrectly.

Second, this doesn’t look like fraud, only error. A malicious attacker who had access to a machine would have had much more powerful, and much less detectable, options at his disposal.

Third, Sequoia seems to avoid saying that what they describe is the only possible cause of such errors. Note the careful wording, “In each and every case where a machine displays [an error], this is the situation that would have caused it …” (emphasis added). They don’t say this “did” cause the errors; they say it “would have”. The sentence is either clumsy or artfully worded.

Fourth, Sequoia’s explanation involves a voter seeing the wrong party’s ballot being activated, and not complaining about it. Assuming (as press accounts say) that the problem happened about sixty times in New Jersey, one would expect that many voters noticed and complained. And one would expect that in at least one of those cases, a poll worker would have noticed that the operator panel was displaying REP and DEM at the same time. Yet there don’t seem to be reports of such behavior.

Fifth, Sequoia doesn’t characterize fully the cases where this problem might occur, so election officials don’t know, for example, which past elections might have been affected.

The bottom line is clear. An investigation is needed – an independent investigation, done by someone not chosen by Sequoia, not paid by Sequoia, and not reporting to Sequoia.

Evidence of New Jersey Election Discrepancies

Press reports on the recent New Jersey voting discrepancies have been a bit vague about the exact nature of the evidence that showed up on election day. What has the county clerks, and many citizens, so concerned? Today I want to show you some of the evidence.

The evidence is a “summary tape” printed by a Sequoia AVC Advantage voting machine in Hillside, New Jersey when the polls closed at the end of the presidential primary election. The tape is timestamped 8:02 PM, February 5, 2008.

The summary tape is printed by poll workers as part of the ordinary procedure for closing the polls. It is signed by several poll workers and sent to the county clerk along with other records of the election.

Let me show you closeups of two sections of the tape. (Here’s the full tape, in TIF format.)

Above you can see the vote totals on this machine for each candidate. On the Democratic side, the tally is Obama 182, Clinton 179. On the Republican side it’s Giuliani 1, Romney 13, McCain 40, Paul 3, Huckabee 4.

Above is the “Option Switch Totals” section, which shows the number of times each party’s ballot was activated: 362 Democratic and 60 Republican.

This doesn’t add up. The machine says the Republican ballot was activated 60 times; but it shows a total of 61 votes cast for Republican candidates. It says the Democratic ballot was activated 362 times; but it shows a total of 361 votes for Democratic candidates. (New Jersey has a closed primary, so voters can cast ballots only in their own registered party.)

What’s alarming here is not the size of the discrepancy but its nature. This is a single voting machine, disagreeing with itself about how many Republicans voted on it. Imagine your pocket calculator couldn’t make up its mind whether 1+13+40+3+4 was 60 or 61. You’d be pretty alarmed, and you wouldn’t trust your calculator until you were very sure it was fixed. Or you’d get a new calculator.

This wasn’t an isolated instance, either. In Union County alone, at least eight other AVC Advantage machines exhibited similar problems, as did dozens more machines in other counties.

Sequoia, the vendor, is trying to prevent any independent investigation of what happened.

Tomorrow: Sequoia’s story about how this happened, and why it’s inadequate.

UPDATE (March 20): We now have copies of nine anomalous tapes, including the one shown above. They’re on our New Jersey voting documents page.

Interesting Email from Sequoia

A copy of an email I received has been passed around on various mailing lists. Several people, including reporters, have asked me to confirm its authenticity. Since everyone seems to have read it already, I might as well publish it here. Yes, it is genuine.

====

Sender: Smith, Ed [address redacted]@sequoiavote.com
To: ,
Subject: Sequoia Advantage voting machines from New Jersey
Date: Fri, Mar 14, 2008 at 6:16 PM

Dear Professors Felten and Appel:

As you have likely read in the news media, certain New Jersey election officials have stated that they plan to send to you one or more Sequoia Advantage voting machines for analysis. I want to make you aware that if the County does so, it violates their established Sequoia licensing Agreement for use of the voting system. Sequoia has also retained counsel to stop any infringement of our intellectual properties, including any non-compliant analysis. We will also take appropriate steps to protect against any publication of Sequoia software, its behavior, reports regarding same or any other infringement of our intellectual property.

Very truly yours,
Edwin Smith
VP, Compliance/Quality/Certification
Sequoia Voting Systems

[contact information and boilerplate redacted]