November 24, 2024

How Much Bandwidth is Enough?

It is a matter of faith among infotech experts that (1) the supply of computing and communications will increase rapidly according to Moore’s Law, and (2) the demand for that capacity will grow roughly as fast. This mutual escalation of supply and demand causes the rapid change we see in the industry.

It seems to be a law of physics that Moore’s Law must terminate eventually – there are fundamental physical limits to how much information can be stored, or how much computing accomplished in a second, within a fixed volume of space. But these hard limits may be a long way off, so it seems safe to assume that Moore’s Law will keep operating for many more cycles, as long as there is demand for ever-greater capacity.

Thus far, whenever more capacity comes along, new applications are invented (or made practical) to use it. But will this go on forever, or is there a point of diminishing returns where more capacity doesn’t improve the user’s happiness?

Consider the broadband link going into a typical home. Certainly today’s homeowner wants more bandwidth, or at least can put more bandwidth to use if it is provided. But at some point there is enough bandwidth to download any reasonable webpage or program in a split second, or to provide real-time ultra-high-def video streams to every member of the household. When that day comes, do home users actually benefit from having fatter pipes?

There is a plausible argument that a limit exists. The human sensory system has limited (though very high) bandwidth, so it doesn’t make sense to direct more than a certain number of bits per second at the user. At some point, your 3-D immersive stereo video has such high resolution that nobody will notice any improvement. The other senses have similar limits, so at some point you have enough bandwidth to saturate the senses of everybody in the home. You might want to send information to devices in the home; but how far can that grow?

Such questions may not matter quite yet, but they will matter a great deal someday. The structure of the technology industries, not to mention technology policies, are built around the idea that people will keep demanding more-more-more and the industry will be kept busy providing it.

My gut feeling is that we’ll eventually hit the point of diminishing returns, but it is a long way off. And I suspect we’ll hit the bandwidth limit before we hit the computation and storage limits. I am far from certain about this. What do you think?

(This post was inspired by a conversation with Tim Brown.)

SonyBMG (Accidentally?) Giving Away MP3 of New Billy Joel Song

Billy Joel’s new song, “All My Life” is being released in stages. Presently it’s available for free streaming from People Magazine’s site. Later in the month it will be available for purchase only at the iTunes Music store. After that it will be released in other online stores. Or at least that was the plan of the record company, SonyBMG.

As an anonymous reader points out, although the People site looks like it is streaming the song, thus giving users no easy way to copy it, what the site actually does is download a high-quality MP3 file (unencumbered by any copy protection) to the user’s computer, and then play the MP3. The MP3 is dropped in a place where ordinary users won’t stumble across it, but if you know where to look you’ll find it sitting on your computer after you listen to the “stream”. In other words, SonyBMG is, perhaps inadvertently, giving away high-quality MP3s of “All My Life.”

(Technical details, for those who care: The “streaming” control is actually a Flash object that downloads and plays an MP3. It uses the normal browser mechanism to do the downloading, which means that the browser (Firefox, at least) automatically squirrels away a copy of the downloaded file. Result: the MP3 file is left on the user’s system.)

The obvious question is why SonyBMG did this. It could be (1) a mistake by an engineer who didn’t realize that the canned music-player control he was using operated by downloading an MP3. Or perhaps (2) the engineer didn’t realize that the browser would keep a copy of the file. Or it could be that (3) SonyBMG knew about all of this and figured users wouldn’t notice, or (4) they figured that any user who could find the MP3 could capture an ordinary stream anyway. For what it’s worth, my money is on (2).

Apple Offers to Sell DRM-Free Music

The Net is buzzing with talk about the open letter posted by Apple CEO Steve Jobs yesterday. In an apparent reversal, Jobs offers to sell MP3 files, free of anti-copying DRM technology, on the iTunes Music Store if the major record companies allow it.

Much as I would like to see Apple renounce DRM entirely, that’s not quite what Jobs is saying. The letter describes three possible futures for Apple’s music technology: (1) continue the current path with a closed Apple-only DRM system; (2) license Apple’s DRM technology to other companies to build compatible systems; and (3) sell DRM-free music.

Apple’s preferred outcome, Jobs says, is outcome (3), selling DRM-free music. This is notable, and somewhat surprising, as the consensus has been that Apple strategy has been to seek outcome (1), using its proprietary DRM to lock customers in to its iTunes-iPod world. If Apple really prefers to eliminate DRM, that is news.

But this part of the letter might just be cheap talk. As Jobs points out in the letter, Apple sells music at the pleasure of the record companies. And if the record companies announce tomorrow that they don’t want Apple to use DRM, then Apple will have little choice but to smile and go along.

So there is little downside to Apple saying that they they willing to get rid of DRM. In this respect, Apple is like the kid who says he is willing to go to the dentist, because he knows that no matter what he says he’s going to see the dentist whenever his parents want him to.

The least-discussed aspect of the letter is its praise for the status quo (outcome (1)). Jobs says that the current system is working well:

The first alternative is to continue on the current course, with each manufacturer competing freely with their own “top to bottom” proprietary systems for selling, playing and protecting music. It is a very competitive market, with major global companies making large investments to develop new music players and online music stores. Apple, Microsoft and Sony all compete with proprietary systems. Music purchased from Microsoft’s Zune store will only play on Zune players; music purchased from Sony’s Connect store will only play on Sony’s players; and music purchased from Apple’s iTunes store will only play on iPods. This is the current state of affairs in the industry, and customers are being well served with a continuing stream of innovative products and a wide variety of choices.

His real scorn is for outcome (2), where Apple licenses its DRM technology to other companies. It’s easy to see why this is the worst outcome for Apple – the company loses its ability to lock in customers, but everybody still has to put up with the cost and hassle of using DRM.

What the letter really does, in typical Jobsian fashion, is frame the debate. It does this in two respects. First, it sets up a choice between two alternatives: stay the course, or get rid of DRM entirely. Second, it points the finger at the major record companies as the ones making the choice.

This is both a clever PR move and a proactive defense against European antitrust scrutiny. Mandatory licensing is a typical antitrust remedy in situations like this, so Apple wants to take licensing off the table as an option. Most of all, Apple wants to deflect the blame for the current situation onto the record companies. Steve Jobs is a genius at this sort of thing, and it looks like he will succeed again.

Sarasota: Limited Investigations

As I wrote last week, malfunctioning voting machines are one of the two plausible theories that could explain the mysterious undervotes in Sarasota’s congressional race. To get a better idea of whether malfunctions could be the culprit, we would have to investigate – to inspect the machines and their software for any relevant errors in design or operation. A well-functioning electoral system ought to be able to do such investigations in an open and thorough manner.

Two attempts have been made to investigate. The first was by representatives of Christine Jennings (the officially losing candidate) and a group of voters, who filed lawsuits challenging the election results and asked, as part of the suits’ discovery process, for access by their experts to the machines and their code. The judge denied their request, in a curious order that seemed to imply that they would first have to prove that there was probably a malfunction before they could be granted access to the evidence needed to tell whether there was a malfunction.

The second attempt was by the Department of State (DOS) of the state of Florida, who commissioned a study by outside experts. Oddly, I am listed in the official Statement of Work (SOW) as a principal investigator on the study team, even though I am not a member of the team. Many people have asked how this happened. The short answer is that I discussed with representatives of DOS the possibility of participating, but eventually it became clear that the study they wanted to commission was far from the complete, independent study I had initially thought they wanted.

The biggest limitation on the study is that DOS is withholding information and resources needed for a complete study. Most notably, they are not providing access to voting machines. You don’t have to be a rocket scientist to realize that if you want to understand the behavior of voting machines, it helps to have a voting machine to examine. DOS could have provided or facilitated access to a machine, but it apparently chose not to do so. [Correction (Feb. 28): The team’s final report revealed that DOS had changed its mind and given the team access to voting machines.] The Statement of Work is clear that the study is to be “a … static software analysis on the iVotronics version 8.0.1.2 firmware source code”.

(In computer science, “static” analysis of software refers to methods that examine the text of the software; “dynamic” methods observe and measure the software while it is running.)

The good news is that the team doing the study is very strong technically, so there is some hope of a useful result despite the limited scope of the inquiry. There have been some accusations of political bias against team members, but knowing several members of the team I am confident that these charges are misguided and the team won’t be swayed by partisan politics. The limits on the study aren’t coming from the team itself.

The results of the DOS-sponsored study should be published sometime in the next few months.

What we have not seen, and probably won’t, is a full, independent study of the iVotronic machines. The voters of Sarasota County – and everyone who votes on paperless machines – are entitled to a comprehensive study of what happened. Sadly, it looks like lawyers and politics will stop that from happening.

Why So Many Undervotes in Sarasota?

The big e-voting story from November’s election was in Sarasota, Florida, where a congressional race was decided by about 400 votes, with 18,412 undervotes. That’s 18,412 voters who cast votes in other races but not, according to the official results, in that congressional race. Among voters who used the ES&S iVotronic machines – that is, non-absentee voters in Sarasota County – the undervote rate was about 14%. Something went very wrong. But what?

Since the election there have been many press releases, op-eds, and blog posts about the undervotes, not to mention some lawsuits and scholarly studies. I want to spend the rest of the week dissecting the Sarasota situation, which I have been following closely. I’m doing this now for two reasons: (1) enough time has passed for the dust to settle a bit, and (2) I’m giving a joint talk on the topic next week and I want to work through some thoughts.

There’s no doubt that something about the iVotronic caused the undervotes. Undervote rates differed so starkly in the same race between iVotronic and non-iVotronic voters that the machines must be involved somehow. (For example, absentee voters had a 2.5% undervote rate in the congressional race, compared to 14% for iVotronic voters.) Several explanations have been proposed, but only two are at all plausible: ballot design and machine malfunction.

The ballot design theory says that the ballot offered to voters on the iVotronic’s screen was misdesigned in a way that caused many voters to miss that race. Looking at screenshots of the ballot, one can see how voters might miss the congressional race at the top of the second page. (Depressingly, some sites show a misleading photo that the photographer angled and lit to make the misdesign look worse than it really was.) It’s very plausible that this kind of problem caused some undervotes; and that is consistent with the reports of many voters that the machine did not show them the congressional race.

It’s one thing to say that ballot design could have caused some undervotes, but it’s another thing entirely to say it was the sole cause of so elevated an undervote rate. Each voter, before finalizing his vote, was shown a clearly designed confirmation screen listing his choices and clearly showing a no-candidate-selected message for the congressional race. Did so many voters miss that too? And what about the many voters who reported choosing a candidate in the congressional race, only to have the no-candidate-selected message show up on the confirmation screen anyway?

The malfunction theory postulates a problem or malfunction with the voting machines that caused votes not to be recorded. There are many types of problems that could have caused lost votes. The best way to evaluate the malfunction theory is to conduct a careful and thorough study of the machines themselves. In the next entry I’ll talk about the efforts that have been made toward that end. For now, suffice it to say that no suitable study is available to us.

If we had a voter-verified paper trail, we could immediately tell which theory is correct, by comparing the paper and electronic records. If the voter-verified paper records show the same high undervote race, then the ballot design theory is right. If the paper and electronic records show significantly different undervote rates, then something is wrong with the machines. But of course the advocates of paperless voting argued that paper trails were unnecessary – while also arguing that touchscreen systems reduce undervotes.

Several studies have tried to use statistical analyses of undervote patterns in different races, precincts, and machines to evaluate the two theories. Frisina, Herron, Honaker, and Lewis say the data support the ballot design theory; Mebane and Dill say the data point to malfunction as a likely cause of at least some of the undervotes. Reading these studies, I can’t reach a clear conclusion.

What would convince me, one way or the other, is a good study of the machines. I’ll talk next time about the fight over whether and how to look at the machines.