January 11, 2025

Hacking the D.C. Internet Voting Pilot

The District of Columbia is conducting a pilot project to allow overseas and military voters to download and return absentee ballots over the Internet. Before opening the system to real voters, D.C. has been holding a test period in which they've invited the public to evaluate the system's security and usability.

This is exactly the kind of open, public testing that many of us in the e-voting security community — including me — have been encouraging vendors and municipalities to conduct. So I was glad to participate, even though the test was launched with only three days' notice. I assembled a team from the University of Michigan, including my PhD students, Eric Wustrow and Scott Wolchok, and Dawn Isabel, a member of the University of Michigan technical staff.

Within 36 hours of the system going live, our team had found and exploited a vulnerability that gave us almost total control of the server software, including the ability to change votes and reveal voters’ secret ballots. In this post, I’ll describe what we did, how we did it, and what it means for Internet voting.

D.C.'s pilot system

The D.C. system is built around an open source server-side application developed in partnership with the TrustTheVote project. Under the hood, it looks like a typical web application. It's written using the popular Ruby on Rails framework and runs on top of the Apache web server and MySQL database.

Absentee overseas voters receive a physical letter in the mail instructing them to visit a D.C. web site, http://www.dcboee.us/DVM/, and log in with a unique 16-character PIN. The system gives voters two options: they can download a PDF ballot and return it by mail, or they can download a PDF ballot, fill it out electronically, and then upload the completed ballot as a PDF file to the server. The server encrypts uploaded ballots and saves them in encrypted form, and, after the election, officials transfer them to a non-networked PC, where they decrypt and print them. The printed ballots are counted using the same procedures used for mail-in paper ballots.

A small vulnerability, big consequences

We found a vulnerability in the way the system processes uploaded ballots. We confirmed the problem using our own test installation of the web application, and found that we could gain the same access privileges as the server application program itself, including read and write access to the encrypted ballots and database.

The problem, which geeks classify as a “shell-injection vulnerability,” has to do with the ballot upload procedure. When a voter follows the instructions and uploads a completed ballot as a PDF file, the server saves it as a temporary file and encrypts it using a command-line tool called GnuPG. Internally, the server executes the command gpg with the name of this temporary file as a parameter: gpg […] /tmp/stream,28957,0.pdf.

We realized that although the server replaces the filename with an automatically generated name (“stream,28957,0” in this example), it keeps whatever file extension the voter provided. Instead of a file ending in “.pdf,” we could upload a file with a name that ended in almost any string we wanted, and this string would become part of the command the server executed. By formatting the string in a particular way, we could cause the server to execute commands on our behalf. For example, the filename “ballot.$(sleep 10)pdf” would cause the server to pause for ten seconds (executing the “sleep 10” command) before responding. In effect, this vulnerability allowed us to remotely log in to the server as a privileged user.

Our demonstration attacks

D.C. launched the public testbed server on Tuesday, September 28. On Wednesday afternoon, we began to exploit the problem we found to demonstrate a number of attacks:

  • We collected crucial secret data stored on the server, including the database username and password as well as the public key used to encrypt the ballots.
  • We modified all the ballots that had already been cast to contain write-in votes for candidates we selected. (Although the system encrypts voted ballots, we simply discarded the encrypted files and replaced them with different ones that we encrypted using the same key.) We also rigged the system to replace future votes in the same way.
  • We installed a back door that let us view any ballots that voters cast after our attack. This modification recorded the votes, in unencrypted form, together with the names of the voters who cast them, violating ballot secrecy.
  • To show that we had control of the server, we left a “calling card” on the system's confirmation screen, which voters see after voting. After 15 seconds, the page plays the University of Michigan fight song. Here's a demonstration.

Stealthiness wasn't our main objective, and our demonstration had a much greater footprint inside the system than a real attack would need. Nevertheless, we did not immediately announce what we had done, because we wanted to give the administrators an opportunity to exercise their intrusion detection and recovery processes — an essential part of any online voting system. Our attack remained active for two business days, until Friday afternoon, when D.C. officials took down the testbed server after several testers pointed out the fight song.

Based on this experience and other results from the public tests, the D.C. Board of Elections and Ethics has announced that they will not proceed with a live deployment of electronic ballot return at this time, though they plan to continue to develop the system. Voters will still be able to download and print ballots to return by mail, which seems a lot less risky.

D.C. officials brought the testbed server back up today (Tuesday) with the electronic ballot return mechanism disabled. The public test period will continue until Friday, October 8.

What this means for Internet voting

The specific vulnerability that we exploited is simple to fix, but it will be vastly more difficult to make the system secure. We've found a number of other problems in the system, and everything we've seen suggests that the design is brittle: one small mistake can completely compromise its security. I described above how a small error in file-extension handling left the system open to exploitation. If this particular problem had not existed, I'm confident that we would have found another way to attack the system.

None of this will come as a surprise to Internet security experts, who are familiar with the many kinds of attacks that major web sites suffer from on a daily basis. It may someday be possible to build a secure method for submitting ballots over the Internet, but in the meantime, such systems should be presumed to be vulnerable based on the limitations of today's security technology.

We plan to write more about the problems we found and their implications for Internet voting in a forthcoming paper.


Professor J. Alex Halderman is a computer scientist at the University of Michigan.

Indian E-Voting Researcher Freed After Seven Days in Police Custody

FLASH: 4:47 a.m. EDT August 28 — Indian e-voting researcher Hari Prasad was released on bail an hour ago, after seven days in police custody. Magistrate D. H. Sharma reportedly praised Hari and made strong comments against the police, saying Hari has done service to his country. Full post later today.

Update: Indian E-Voting Researcher Remains in Police Custody

Update: 8/28 Indian E-Voting Researcher Freed After Seven Days in Police Custody

In case you’re just tuning in, e-voting researcher Hari Prasad, with whom I coauthored a paper exposing serious flaws in India’s electronic voting machines (EVMs), was arrested Saturday morning at his home in Hyderabad. The arresting officers told him they were acting under “pressure [from] the top,” and demanded that he disclose the identity of the anonymous source who provided the voting machine that we studied. Since then, Hari has been held in custody by the Mumbai police and repeatedly questioned.

Recent Developments

There have several developments in Hari’s case since my last post.

On Sunday, about 28 hours after his arrest, Hari appeared before a magistrate in Mumbai and was formally charged for the first time. The officers who arrested him had not stated a specific charge, but they had told him he would be left alone if he would reveal the identity of the source who provided us the machine . Hari has not named the source, and the authorities are now alleging that he took the machine from the government’s warehouse himself.

Specifically, he was charged under Section 454 of the Indian Penal Code (“lurking house-trespass or house-breaking in order to commit [an] offence punishable with imprisonment”), Section 457 (“lurking house trespass or house-breaking by night in order to commit an offence punishable with imprisonment”) and Section 380 (“theft in [a] dwelling house”).

These charges are without merit. Hari has never denied having been in possession of a machine—we even held it up for a photograph to accompany our paper—but the police have offered no evidence whatsoever that Hari ever trespassed in a government warehouse, much less stole a voting machine or anything else from one.

As I have previously stated, Hari obtained access to the machine from a source who approached him earlier this year. We have every reason to believe that the source had lawful access to the machine and made it available for scientific study as a matter of conscience, out of concern over potential security problems.

At Sunday’s hearing, Hari was remanded in police custody until today, when he appeared again before a magistrate and requested bail on medical grounds. (He is reported to be suffering from breathing problems.) The court refused to entertain the bail request and instead granted a police request that Hari remain in custody. The next hearing is scheduled for Saturday, at which time Hari can again seek bail.

One positive development is that Hari’s legal team now includes Mahesh Jethmalani and his father, Ram Jethmalani. I am told they are among the most sought after defense lawyers in India.

Keeping Sight of the Facts

Hari’s arrest has provoked explosive debate in India, not only about the arrest’s apparent political motives, but also about much broader questions our study raised over the security and transparency of India’s voting system. In the midst of this emotionally charged debate, I think it would be helpful to reiterate what our study does and does not reveal.

What the study I coauthored with Hari Prasad shows is essentially two things:

First, far from being “tamperproof,” India’s EVMs are vulnerable to most of the same security problems as the paper ballots they replaced—including an electronic form of booth capturing. Any time during or after the election, dishonest election insiders or other criminals with physical access to the machines can alter the votes stored inside.

Second, unlike the old paper ballot boxes, the EVMs can be tampered with long before elections take place to cause fraudulent results in the future. In other words, a dishonest insider or other criminal could manipulate an EVM today and have it steal votes months or years from now. You can’t do that with a ballot box.

What our study doesn’t show is that any election has ever been stolen by tampering with EVMs. Today’s EVMs are susceptible to tampering, and such tampering has the potential to change results in national elections, but our study does not even attempt to show that any past election result is invalid. Nobody can reasonably claim, based solely on the results we’ve presented, that an election now settled should be overturned.

Now that we know that EVMs have these vulnerabilities, it’s time for the Election Commission of India to stop pretending that the machines used today are perfect, and start working with India’s academic and technical communities to create a voting system that is worthy of voters’ trust.

It’s Time for India to Face its E-Voting Problem

The unjustified arrest of Indian e-voting researcher Hari Prasad, while an ordeal for Prasad and his family, and an embarrassment to the Indian authorities, has at least helped to focus attention on India’s risky electronic voting machines (EVMs).

Sadly, the Election Commission of India, which oversees the country’s elections, is still sticking to its position that the machines are “perfect” and “fully tamperproof”, despite evidence to the contrary including convincing peer-reviewed research by Prasad and colleagues, not to mention the common-sense fact that no affordable electronic device can ever hope to be perfect or tamperproof. The Election Commission can no longer plausibly deny that EVM vulnerabilities exist. The time has come for India to have an honest, public conversation about how it votes.

The starting point for this discussion must be to recognize the vulnerabilities of EVMs. Like paper ballots, the ballots stored in an EVM are subject to tampering during and after the election, unless they are monitored carefully. But EVMs, unlike paper ballots, are also subject to tampering before the election, perhaps months or years in advance. Indeed, for many EVMs these pre-election vulnerabilities are the most serious problem.

So which voting system should India use? That’s a question for the nation to decide based on its own circumstances, but it appears there is no simple answer. The EVMs have problems, and old-fashioned paper ballots have their own problems. Despite noisy claims to the contrary from various sides, showing that one is imperfect does not prove that the other must be used. Most importantly, the debate must recognize that there are more than two approaches — for example, most U.S. jurisdictions are now moving to systems that combine paper and electronics, such as precinct-count optical scan systems in which the voter marks a paper ballot that is immediately read by an electronic scanner. Whether a similar system would work well for India remains an open question, but there are many options, including new approaches that haven’t been invented yet, and India will need to do some serious analysis to figure out what is best.

To find the best voting system for India, the Election Commission will need all of the help it can get from India’s academic and technical communities. It will especially need help from people like Hari Prasad. Getting Prasad out of jail and back to work in his lab would not only serve justice — which should be reason enough to free him — but would also serve the voters of India, who deserve a better voting system than they have.

Electronic Voting Researcher Arrested Over Anonymous Source

Updates: 8/28 Alex Halderman: Indian E-Voting Researcher Freed After Seven Days in Police Custody
8/26 Alex Halderman: Indian E-Voting Researcher Remains in Police Custody
8/24 Ed Felten: It’s Time for India to Face its E-Voting Problem
8/22 Rop Gonggrijp: Hari is in jail 🙁

About four months ago, Ed Felten blogged about a research paper in which Hari Prasad, Rop Gonggrijp, and I detailed serious security flaws in India’s electronic voting machines. Indian election authorities have repeatedly claimed that the machines are “tamperproof,” but we demonstrated important vulnerabilities by studying a machine provided by an anonymous source.

The story took a disturbing turn a little over 24 hours ago, when my coauthor Hari Prasad was arrested by Indian authorities demanding to know the identity of that source.

At 5:30 Saturday morning, about ten police officers arrived at Hari’s home in Hyderabad. They questioned him about where he got the machine we studied, and at around 8 a.m. they placed him under arrest and proceeded to drive him to Mumbai, a 14 hour journey.

The police did not state a specific charge at the time of the arrest, but it appears to be a politically motivated attempt to uncover our anonymous source. The arresting officers told Hari that they were under “pressure [from] the top,” and that he would be left alone if he would reveal the source’s identity.

Hari was allowed to use his cell phone for a time, and I spoke with him as he was being driven by the police to Mumbai:

The Backstory

India uses paperless electronic voting machines nationwide, and the Election Commission of India, the country’s highest election authority, has often stated that the machines are “perfect” and “fully tamper-proof.” Despite widespread reports of election irregularities and suspicions of electronic fraud, the Election Commission has never permitted security researchers to complete an independent evaluation nor allowed the public to learn crucial technical details of the machines’ inner workings. Hari and others in India repeatedly offered to collaborate with the Election Commission to better understand the security of the machines, but they were not permitted to complete a serious review.

Then, in February of this year, an anonymous source approached Hari and offered a machine for him to study. This source requested anonymity, and we have honored this request. We have every reason to believe that the source had lawful access to the machine and made it available for scientific study as a matter of conscience, out of concern over potential security problems.

Later in February, Rop Gonggrijp and I joined Hari in Hyderabad and conducted a detailed security review of the machine. We discovered that, far from being tamperproof, it suffers from a number of weaknesses. There are many ways that dishonest election insiders or other criminals with physical access could tamper with the machines to change election results. We illustrated two ways that this could happen by constructing working demonstration attacks and detailed these findings in a research paper, Security Analysis of India’s Electronic Voting Machines. The paper recently completed peer review and will appear at the ACM Computer and Communications Security conference in October.

Our work has produced a hot debate in India. Many commentators have called for the machines to be scrapped, and 16 political parties representing almost half of the Indian parliament have expressed serious concerns about the use of electronic voting.

Earlier this month at EVT/WOTE, the leading international workshop for electronic voting research, two representatives from the Election Commission of India joined in a panel discussion with Narasimha Rao, a prominent Indian electronic voting critic, and me. (I will blog more about the panel in coming days.) After listening to the two sides argue over the security of India’s voting machines, 28 leading experts in attendance signed a letter to the Election Commission stating that “India’s [electronic voting machines] do not today provide security, verifiability, or transparency adequate for confidence in election results.”

Nevertheless, the Election Commission continues to deny that there is a security problem. Just a few days ago, Chief Election Commissioner S.Y. Quraishi told reporters that the machines “are practically totally tamper proof.”

Effects of the Arrest

This brings us to today’s arrest. Hari is spending Saturday night in a jail cell, and he told me he expects to be interrogated by the authorities in the morning. Hari has retained a lawyer, who will be flying to Mumbai in the next few hours and who hopes to be able to obtain bail within days. Hari seemed composed when I spoke to him, but he expressed great concern for his wife and children, as well as for the effect his arrest might have on other researchers who might consider studying electronic voting in India.

If any good has come from this, it’s that there has been an outpouring of support for Hari. He has received positive messages from people all over India.

Unfortunately, the entire issue distracts from the primary problem: India’s electronic voting machines have fundamental security flaws, and do not provide the transparency necessary for voters to have confidence in elections. To fix these problems, the Election Commission will need help from India’s technical community. Arresting and interrogating a key member of that community is enormously counterproductive.


Professor J. Alex Halderman is a computer scientist at the University of Michigan.