January 11, 2025

Privacy Theater

I have a piece in today’s NY Times “Room for Debate” feature, on whether the government should regulate Facebook. In writing the piece, I was looking for a pithy way to express the problems with today’s notice-and-consent model for online privacy. After some thought, I settled on “privacy theater”.

Bruce Schneier has popularized the term “security theater,” denoting security measures that look impressive but don’t actually protect us—they create the appearance of security but not the reality. When a security guard asks to see your ID but doesn’t do more than glance at it, that’s security theater. Much of what happens at airport checkpoints is security theater too.

Privacy theater is the same concept, applied to privacy. Facebook’s privacy policy runs to almost 6000 words of dense legalese. We are all supposed to have read it and agreed to accept its terms. But that’s just theater. Hardly any of us have actually read privacy policies, and even fewer consider carefully their provisions. As I wrote in the Times piece, we pretend to have read sites’ privacy policies, and the sites pretend that we have understood and consented to all of their terms. It’s privacy theater.

Worse yet. privacy policies are subject to change. When sites change their policies, we get another round of privacy theater, in which sites pretend to notify us of the changes, and we pretend to consider them before continuing our use of the site.

And yet, if we’re going to replace the notice-and-consent model, we need something else to put in its place. At this point, It’s hard to see what that might be. It might help to set up default rules, on the theory that a policy that states how it differs from the default might be shorter and simpler than a stand-alone policy, but that approach will only go so far.

In the end, we may be stuck with privacy theater, just as we’re often stuck with security theater. If we can’t provide the reality of privacy or security, we can settle for theater, which at least makes us feel a bit better about our vulnerability.

School's Laptop Spying Software Exploitable from Anywhere

This post is by Jay Novak, Jon Stribley, and J. Alex Halderman.

Absolute Manage is a remote administration program that allows sysadmins to supervise and maintain client computers over the Internet. It has been in the news since early February, when Lower Merion School District in Pennsylvania was alleged to be using it to spy on students at home via their laptop webcams. The story took a new twist last Thursday, when Threat Level reported that researchers at Leviathan Security Group had discovered serious vulnerabilities in the program. These problems let attackers carry out a number of exploits, including installing malware or running other arbitrary code on the students’ laptops. The major limitation in the reported attacks is that the bad guy needs to be on the same local network as the victim, and the program’s developers, Absolute Software, says it’s a largely theoretical threat.

Unfortunately, the security problems are worse than has been reported so far, and are far from theoretical. In fact, any machine with a public IP address running Absolute Manage can be taken over by attackers anywhere on the Internet. Such an attacker can command the machine to run arbitrary code, steal data, or take photographs using the computer’s camera.

We have been investigating Absolute Manage for several months, hoping to gain a better understanding of the security measures it employs to protect users. We are disclosing this information now because, following the Threat Level post, we believe it’s only a matter of time until real attackers discover it. Users need to be aware of the vulnerabilities and take proper measures to protect themselves.

Broken Cryptography

The security issues revolve around the way Absolute Manage encrypts commands sent to the clients. The software has two parts: the Absolute Manage Agent, which runs on client machines, and the Absolute Manage Server, which tracks clients under its supervision and sends commands to perform remote operations like installing new software. The clients and server exchange messages using a TCP-based protocol. Clients continuously listen for messages containing instructions from the server, and they also periodically send “heartbeat” messages to the server to deliver status updates and pull down any queued commands.

The programs compress and encrypt each message before transmitting it. They use an encryption algorithm called Blowfish, which is a credible, if outmoded, choice. The problem is how the keys are managed. Strong encryption protocols like SSL negotiate a new secret key for each communication session, but Absolute Manage uses the same hard coded key every time, in every client. Blowfish can use variable-sized keys from 1-56 bytes, and the programmers decided to use secret textual phrases for the keys. We know what the keys are. We won’t publish them here, but they were easy to figure out by inspecting the program files.

Using hard coded keys neutralizes the benefits of cryptography. Since the same, easy-to-discover key is used in every client, it’s straightforward for an attacker to unwrap the encrypted messages, modify them, or encrypt messages of his own. This problem is very similar to the broken cryptography in Diebold voting machines that Ari, Alex, and Ed discovered years ago. Diebold also used a simple fixed key, which allowed an attacker with access to one machine to learn the key and attack all the other machines.

The broken cryptography in Absolute Manage enables a variety of attacks. For instance, an attacker can eavesdrop on a command sent from the server and rewrite it to issue a new command that installs and executes malicious code. Or, he can act as a man-in-the-middle between the client and server and insert evil commands in response to a client heartbeat message. An attacker could easily do these by sniffing wireless LAN traffic, as in school and office environments where Absolute Manage is often deployed. These seem to be the attacks referred to in the Threat Level post.

Exploitable from Anywhere

The limitation of these attacks is that the bad guy usually needs to be on the same physical network as the victim. However, we discovered that potentially more dangerous attacks are possible. In these attacks, a bad guy anywhere on the Internet can exploit any Absolute Manage client with a publicly reachable IP address.

Here’s an example of a message from the server to the client, with the encryption and compression removed. The client tries to authenticate the command using a parameter called the SeedValue. This value is provided by the server when a client initially attempts to contact it after booting. After that, the client requires the SeedValue to be the same in subsequent commands. The client basically ignores all of the other parameters that look like they would be hard to guess, so the SeedValue is the only thing that makes it difficult for the attacker to generate his own command messages from whole cloth.

In our example message, the SeedValue is:

D969E2CD0CB67F4063F45CEAC7D145B12D76A969306AE0CE

It turns out that it is encrypted using a second hard-coded textual phrase. Decrypting it yields the following bytes:

00 00 00 00 e0 03 10 03 40 03 00 00 31 00 34 00 37 00 35 00 00 00 00 00 00

The length is misleading; the value is actually just a 16-bit unicode encoding of a 7-digit number, 1401475. This is the server’s “serial number,” which was provided by Absolute Software along with the product activation key when we purchased our license.

Thus, an attacker who wants to send arbitrary commands to Absolute Manage clients just needs to figure out the server’s serial number. One way he can do that is to guess it. The attacker could try contacting the client with different values until one of them turns out to be correct. If all serial numbers are 7 digits (like ours) or less, and there is no pattern to there assignment, then an attacker can guess among 10 million possibilities. If there is a pattern (the likely case) then the attacker’s job may be much easier. Our tests show that we can make more than 330 guesses/second over a fast network link, so even assuming no pattern an attacker could expect to succeed after about four hours of guessing. Each server uses the same serial number for all its clients, so after the attacker guesses it for one client, he can compromise all the server’s other clients without any additional guesswork.

Brute forcing the server’s serial number is one method attackers can use, but there is a much more efficient attack for targeting a large set of clients: the server will tell the correct SeedValue to any client that asks. If the attacker knows the IP address of the server a client is trying to contact, he can just impersonate a freshly-booted client and ask the server to send him the correct SeedValue. The server will respond with all the information the attacker needs to impersonate the server.

A bad guy could extend this method to target all Absolute Manage clients in one attack. He could scan the entire Internet address space to discover all hosts running Absolute Manage Server and build a list of active SeedValues. (Servers generally run on public IP addresses so that they can receive status updates from clients that are away from the local network.) Such a scan would take only a few days. The attacker could then do a second Internet-wide scan to discover Absolute Manage Clients. For each of them, he would need only a few seconds to try all the active SeedValues from his list and determine the correct one. This attack could be exploited to quickly install and run malicious code on all computers running the Absolute Manage client on publicly accessible IP addresses.

Defenses and Lessons

In the short term, users can protect themselves by uninstalling the Absolute Manage client. This might be difficult on machines with privileges locked down, so system administrators will need to help.

(Attempts to work around the problem, such as firewalling the server so it can’t be found by an Internet scan, may backfire. If the server is unreachable from outside the firewall, clients that are rebooted away from the local network will be unable to obtain a SeedValue. In this situation, the clients insecurely default to accepting arbitrary commands without even the protection of a SeedValue.)

In the long term, the solution is for Absolute Manage to adopt serious cryptographic authentication. Absolute Software says they will do this in the next version later this summer–let’s hope they get it right next time.

Remote administration products like Absolute Manage carry large risks because they intentionally create a mechanism for a remote third party to take control of the machine. This can be powerful in the right hands but devastating if exploited by attackers. There will always be a risk of abuse by authorized parties, as alleged in the students’ lawsuit against Lower Merion School District, but correctly designed technology should at least prevent unauthorized third-party attacks by making sure only authorized parties can issue commands. This requires getting authentication right–exactly what Absolute Manage failed to do.

Because of these dangers, remote administration software should be designed defensively, minimizing the risk even if the authentication fails. For example, it could only allow installation of signed binaries, or it could give users prominent notification before actions are taken so that attacks can be more easily detected.

The blatant vulnerabilities in Absolute Manage suggest that this kind of remote administration software requires greater security scrutiny. We will further discuss the problems and the lessons they carry in a forthcoming paper.

India's Electronic Voting Machines Have Security Problems

A team led by Hari Prasad, Alex Halderman, and Rop Gonggrijp released today a technical paper detailing serious security problems with the electronic voting machines (EVMs) used in India.

The independent Electoral Commission of India, which is generally well respected, has dealt poorly with previous questions about EVM security. The chair of the Electoral Commission has called the machines “infallible” and “perfect” and has rejected any suggestion that security improvements are even possible. I hope the new study will cause the EC to take a more realistic approach to EVM security.

The researchers got their hands on a real Indian EVM which they were able to examine and analyze. They were unable to extract the software running in the machine (because that would have required rendering the machine unusable for elections, which they had agreed not to do) so their analysis focused on the hardware. They were able to identify several attacks that manipulated the hardware, either by replacing components or by clamping something on to a chip on the motherboard to modify votes. They implemented demonstration attacks, actually building proof-of-concept substitute hardware and vote-manipulation devices.

Perhaps the most interesting aspect of India’s EVMs is how simple they are. Simplicity is a virtue in security as in engineering generally, and researchers (including me) who have studied US voting machines have advocated simplifying their design. India’s EVMs show that while simplicity is good, it’s not enough. Unless there is some way to audit or verify the votes, even a simple system is subject to manipulation.

If you’re interested in the details, please read the team’s paper.

The ball is now in the Election Commission’s court. Let’s hope that they take steps to address the EVM problems, to give the citizens of the world’s largest democracy the transparent and accurate elections they deserve.

Google Publishes Data on Government Data and Takedown Requests

Citizens have long wondered how often their governments ask online service providers for data about users, and how often governments ask providers to take down content. Today Google took a significant step on this issue, unveiling a site reporting numbers on a country-by-country basis.

It’s important to understand what is and isn’t included in the data on the Google site. First, according to Google, the data excludes child porn, which Google tries to block proactively, worldwide.

Second, the site reports requests made by government, not by private individuals. (Court orders arising from private lawsuits are included, because the court issuing the order is an arm of government.) Because private requests are excluded, the number of removal requests is lower than you might expect — presumably removal requests from governments are much less common than those from private parties such as copyright owners.

Third, Google is reporting the number of requests received, and not the number of users affected. A single request might affect many users; or several requests might focus on a single user. So we can’t use this data to estimate the number of citizens affected in any particular country.

Another caveat is that Google reports the country whose government submitted the request to Google, but this may not always be the government that originated the request. Under Mutual Legal Assistance Treaties, signatory countries agree to pass on law enforcement data requests for other signatories under some circumstances. This might account for some of the United States data requests, for example, if other countries asked the U.S. government to make data requests to Google. We would expect there to be some such proxy requests, but we can’t tell from the reported data how many there were. (It’s not clear whether Google would always be able to distinguish these proxy requests from direct requests.)

With these caveats in mind, let’s look at the numbers. Notably, Brazil tops both the data-requests list and the takedown-requests list. The likely cause is the popularity of Orkut, Google’s social network product, in Brazil. India, where Orkut is also somewhat popular, appears relatively high on the list as well. Social networks often breed disputes about impersonation and defamation, which could lead a government to order release of information about who is using a particular account.

The U.S. ranks second on the data-requests list but is lower on the takedown-requests list. This is consistent with the current U.S. trend toward broader data gathering by law enforcement, along with the relatively strong protection of free speech in the U.S.

Finally, China is a big question mark. According to Google, the Chinese government claims that the relevant data is a state secret, so Google cannot release it. The Chinese government stands conspicuously alone in this respect, choosing to deny its citizens even this basic information about their government’s activities.

There’s a lot more information I’d like to see about government requests. How many citizens are affected? How many requests does Google comply with? What kinds of data do governments seek about Google users? And so on.

Despite its limitations, Google’s site is a valuable step toward transparency about governments’ attempts to observe and control their citizens’ online activities. I hope other companies will follow suit, and that Google will keep pushing on this issue.

Pseudonyms: The Natural State of Online Identity

I’ve been writing recently about the problems that arise when you try to use cryptography to verify who is at the other end of a network connection. The cryptographic math works, but that doesn’t mean you get the identity part right.

You might think, from this discussion, that crypto by itself does nothing — that cryptographic security can only be bootstrapped from some kind of real-world identity verification. That’s the way it works for website certificates, where a certificate authority has to check your bona fides before it will issue you a certificate.

But this intuition turns out to be wrong. There is one thing that crypto can do perfectly, without any real-world support: providing pseudonyms. Indeed, crypto is so good at supporting pseudonyms that we can practically say that pseudonyms are the natural state of identity online.

To explain why this is true, I need to offer a gentle introduction to a basic crypto operation: digital signatures. Suppose John Doe (“JD”) wants to use digital signatures. First, JD needs to create a private cryptographic key, which he does by generating some random numbers and combining them according to a special geeky recipe. The result is a unique private key that only JD knows. Next, JD uses a certain procedure to determine the public key that corresponds to his private key. He announces the public key to everyone. The math guarantees that (1) JD’s public key is unique and corresponds to JD’s private key, and (2) a person who knows JD’s public key can’t figure out JD’s private key.

Now JD can make digital signatures. If JD wants to “sign” a certain message M, he combines M with JD’s private key in a special way, and the result is JD’s “signature on M”. Now anybody can verify the signature, using JD’s public key. Only JD can make the signature, because only JD knows JD’s private key; but anybody can verify the signature.

At no point in this process does JD tell anybody who he is — I called him “John Doe” for a reason. Indeed, JD’s public key is a perfect pseudonym: it conveys nothing about JD’s actual identity, yet it has a distinct “owner” whose presence can be verified. (“You’re really the person who created this public key? Then you should be able to make a signature on the message ‘squeamish ossifrage’ for me….”)

Using this method, anybody can make up a fresh pseudonym whenever they want. If you can generate random numbers and do some math (or have your computer do those things for you), then you can make a fresh pseudonym. You can make as many as you want, without needing to coordinate with anybody. This is all easy to do.

These methods, pseudonyms and signatures, are used even in cases where we want to verify somebody’s real-world identity. When you connect to (say) https://mail.google.com, Google’s web server gives you its public key — a pseudonym — along with a digital certificate that attests that that public key — that pseudonym — belongs to Google Inc. Binding public keys — pseudonyms — to real-world identities is tedious and messy, but of course this is often necessary in practice.

Online, identities are hard to manage. Pseudonyms are easy.