June 27, 2017

The Slingbox Pro: Information Leakage and Variable Bitrate (VBR) Fingerprints

[Today’s guest blogger is Yoshi Kohno, a Computer Science prof at University of Washington who has done interesting work on security and privacy topics including e-voting. – Ed]

If you follow technology news, you might be aware of the buzz surrounding technologies that mate the Internet with your TV. The Slingbox Pro and the Apple TV are two commercial products leading this wave. The Slingbox Pro and the Apple TV system are a bit different, but the basic idea is that they can stream videos over a network. For example, you could hook the Slingbox Pro up to your DVD player or cable TV box, and then wirelessly watch a movie on any TV in your house (via the announced Sling Catcher). Or you could watch a movie or TV show on your laptop from across the world.

Privacy is important for these technologies. For example, you probably don’t want someone sniffing at your ISP to figure out that you’re watching a pirated copy of Spiderman 3 (of course, we don’t condone piracy). You might not want your neighbor, who likes to sniff 802.11 wireless packets, to be able to figure out what channel, movie, or type of movie you’re watching. You might not want your hotel to figure out what movie you’re watching on your laptop in order to send you targeted ads. The list goes on…

To address viewer privacy, the Slingbox Pro uses encryption. But does the use of encryption fully protect the privacy of a user’s viewing habits? We studied this question at the University of Washington, and we found that the answer to this questions is No – despite the use of encryption, a passive eavesdropper can still learn private information about what someone is watching via their Slingbox Pro.

The full details of our results are in our Usenix Security 2007 paper, but here are some of the highlights.

First, in order to conserve bandwidth, the Slingbox Pro uses something called variable bitrate (VBR) encoding. VBR is a standard approach for compressing streaming multimedia. At a very abstract level, the idea is to only transmit the differences between frames. This means that if a scene changes rapidly, the Slingbox Pro must still transmit a lot of data. But if the scene changes slowly, the Slingbox Pro will only have to transmit a small amount of data – a great bandwidth saver.

Now notice that different movies have different visual effects (e.g., some movies have frequent and rapid scene changes, others don’t). The use of VBR encodings therefore means that the amount data transmitted over time can serve as a fingerprint for a movie. And, since encryption alone won’t fully conceal the number of bytes transmitted, this fingerprint can survive encryption!

We experimented with fingerprinting encrypted Slingbox Pro movie transmissions in our lab. We took 26 of our favorite movies (we tried to pick movies from the same director, or multiple movies in a series), and we played them over our Slingbox Pro. Sometimes we streamed them to a laptop attached to a wired network, and sometimes we streamed them to a laptop connected to an 802.11 wireless network. In all cases the laptop was one hop away.

We trained our system on some of those traces. We then took new query traces for these movies and tried to match them to our database. For over half of the movies, we were able to correctly identify the movie over 98% of the time. This is well above the less than 4% accuracy that one would get by random chance.

What does all this mean? First and foremost, this research result provides further evidence that critical information can leak out through encrypted channels; see our paper for related work. In the case of encrypted streaming multimedia, one might wonder how our results scale since we only tested 26 movies. Addressing the scalability question for our new VBR-based fingerprinting approach is a subject of future research; but, as cryptanalysts like to say, attacks only get better. Moreover, if the makers of movies wanted to, they could potentially make the VBR fingerprints for their movies even stronger and more uniquely identifying.

(This note is not meant to criticize the makers of the Slingbox Pro. In fact, we were very pleased to learn that the Slingbox Pro uses encryption, which does raise the bar against a privacy attacker. Rather, this note describes new research results and fundamental challenges for privacy and streaming multimedia.)