April 21, 2014

avatar

Slysoft Commercializes Next-Gen DVD Circumvention

We’ve been following, off and on, the steady meltdown of AACS, the encryption scheme used in HD-DVD and Blu-ray, the next-generation DVD systems. By this point, Hollywood has released four generations of AACS-encoded discs, each encrypted with different secret keys; and the popular circumvention tools can still decrypt them all. The industry is stuck on a treadmill: they change keys every ninety days, and attackers promptly reverse-engineer the new keys and carry on decrypting discs.

One thing that has changed is the nature of the attackers. In the early days, the most effective reverse engineers were individuals, communicating by email and pseudonymous form posts. Their efforts resulted in rough but workable circumvention tools. In recent months, though, circumvention has gone commercial, with Slysoft, an Antigua-based maker of DVD-reader software, taking the lead and offering more polished tools for reading and ripping AACS discs.

You might wonder how a company that makes software for playing DVDs got into the circumvention business. The answer has to do with AACS’s pickiness about which equipment it will work with. My lab, for example, has an HD-DVD drive and some discs, which we have used for research purposes. But as far as I know, none of the computer monitors we own are AACS-approved, so we have no way to watch our lawfully purchased HD-DVDs on our lawfully purchased equipment. Many customers face similar problems.

If you’re selling HD-DVD player software, you can tell those customers that your product is incompatible with their equipment. Or you can solve their problem and make their legitimately purchased discs play on their legitimately purchased equipment. Of course, this will make you persona non grata in Hollywood, so you had better hire a few reverse engineers and get to work on some unauthorized decryption software – which seems to be what Slysoft did.

Now Slysoft faces the same reverse engineering challenges that Hollywood did. If Slysoft’s products contain the secrets to AACS decryption, then independent analysts can extract those secrets and clone Slysoft’s AACS decryption capability. Will those who live by reverse engineering die by reverse engineering?

avatar

AACS Updated, Broken Again

[Other posts in this series]

We predicted in past posts that AACS, the encryption system intended to protect HD-DVD and Blu-ray movies, would suffer a gradual meltdown from its inability to respond quickly enough to attacks. Like most DRM, AACS depends on the secrecy of encryption keys built into hardware and software players. An attacker who discovers a player’s keys can defeat the protection on any disc that works with that player. AACS was designed with a defense against such attacks: after a player has been compromised, producers can alter new discs so that they no longer work with the compromised player’s keys. Whether this defense (which we call “key blacklisting”) will do much to stop copying depends how much time elapses before each leaked key is blacklisted.

Next week marks three months after the first compromised player key appeared on the Internet (and more than five months after cracks for individual discs began to appear). Discs slated for release on Tuesday will be the first to contain an update to AACS that blacklists the leaked keys.

What took so long? One limitation comes from the licensing agreement signed with player manufacturers, which requires that they receive ninety days’ notice before their keys are blacklisted, so that they have enough time to update their products.

Customers who obtained the new discs a few days early confirmed that the previously leaked keys no longer worked. It seemed as if AACS had recovered from the attacks just as its designers intended.

However, a new twist came yesterday, when SlySoft, an Antigua-based company that sells software to defeat various forms of copy protection, updated its AnyDVD product to allow it to copy the new AACS discs. Apparently, SlySoft had extracted a key from a different player and had kept the attack a secret. They waited until all the other compromised keys were blacklisted before switching to the new one.

The AACS Licensing Authority will be able to figure out which player SlySoft cracked by examining the program, and they will eventually blacklist this new key as well. However, all discs on store shelves will remain copyable for months, since disc producers must wait another ninety days before making the change.

To be successful in the long run, AACS needs to outpace such attacks. Its backers might be able to accelerate the blacklisting cycle somewhat by revising their agreements with player manufacturers, but the logistics of mastering discs and shipping them to market mean the shortest practical turnaround time will be at least several weeks. Attackers don’t even have to wait this long before they start to crack another player. Like Slysoft, they can extract keys from several players and keep some of them secret until all publicly known keys are blacklisted. Then they can release the other keys one at a time to buy additional time.

All of this is yet more bad news for AACS.

avatar

You Can Own an Integer Too — Get Yours Here

Remember last week’s kerfuffle over whether the movie industry could own random 128-bit numbers? (If not, here’s some background: 1, 2, 3)

Now, thanks to our newly developed VirtualLandGrab technology, you can own a 128-bit integer of your very own.

Here’s how we do it. First, we generate a fresh pseudorandom integer, just for you. Then we use your integer to encrypt a copyrighted haiku, thereby transforming your integer into a circumvention device capable of decrypting the haiku without your permission. We then give you all of our rights to decrypt the haiku using your integer. The DMCA does the rest.

The haiku is copyright 2007 by Edward W. Felten:

We own integers,
Says AACS LA.
You can own one too.

Here is your very own 128-bit integer, which we hereby deed to you:

[can't display integer]

If you’d like another integer, just hit Shift-Reload, and we’ll make a fresh one for you. Make as many as you want! Did we mention that a shiny new integer would make a perfect Mother’s Day gift?

If you like our service, you can upgrade for a low annual fee to VirtualLandGrab Gold – and claim thousands of integers with a single click!

avatar

Why the 09ers Are So Upset

The user revolt at Digg and elsewhere, over attempts to take down the now-famous “09 F9 …” number, is now all over the press. (Background: 1, 2) Many non-techies, including some reporters, wonder why users care so much about this. What is it about “09F9…” that makes people willing to defend it by making T-shirts, writing songs, or subjecting their dotcom startup to lawsuit risk?

The answer has several parts. The first answer is that it’s a reaction against censorship. Net users hate censorship and often respond by replicating the threatened content. When Web companies take down user-submitted content at the behest of big media companies, that looks like censorship. But censorship by itself is not the whole story.

The second part of the answer, and the one most often missed by non-techies, is the fact that the content in question is an integer – an ordinary number, in other words. The number is often written in geeky alphanumeric format, but it can be written equivalently in a more user-friendly form like 790,815,794,162,126,871,771,506,399,625. Giving a private party ownership of a number seems deeply wrong to people versed in mathematics and computer science. Letting a private group pick out many millions of numbers (like the AACS secret keys), and then simply declare ownership of them, seems even worse.

While it’s obvious why the creator of a movie or a song might deserve some special claim over the use of their creation, it’s hard to see why anyone should be able to pick a number at random and unilaterally declare ownership of it. There is nothing creative about this number – indeed, it was chosen by a method designed to ensure that the resulting number was in no way special. It’s just a number they picked out of a hat. And now they own it?

As if that’s not weird enough, there are actually millions of other numbers (other keys used in AACS) that AACS LA claims to own, and we don’t know what they are. When I wrote the thirty-digit number that appears above, I carefully avoided writing the real 09F9 number, so as to avoid the possibility of mind-bending lawsuits over integer ownership. But there is still a nonzero probability that AACS LA thinks it owns the number I wrote.

When the great mathematician Leopold Kronecker wrote his famous dictum, “God created the integers; all else is the work of man”, he meant that the basic structure of mathematics is part of the design of the universe. What God created, AACS LA now wants to take away.

The third part of the answer is that the link between the 09F9 number and the potential harm of copyright infringement is pretty tenuous. AACS LA tells everyone who will listen that the discovery and distribution of the 09F9 number is no real threat to the viability of AACS or the HD-DVD/Blu-ray formats. A person getting the 09F9 number could, if he or she is technically skillful, invest a lot of work to get access to movies. But there are easier, less tech-intensive ways to get the same movies. Publishing the number has approximately zero impact on copyright infringement.

Which brings us to the civil disobedience angle. It’s no secret that many in the tech community despise the DMCA’s anticircumvention provisions. If you’re going to defy a law to show your disagreement with it, you’ll look for a situation where (1) the application of the law is especially inappropriate, (2) your violation does no actual harm, and (3) many others are doing the same thing so the breadth of opposition to the law is evident. That’s what we see here.

It will be interesting to see what AACS LA does next. My guess is that they’ll cut their losses, refrain from sending demand letters and filing lawsuits, and let the 09F9 meme run its course.

avatar

Digg Users Revolt Over AACS Key

I wrote yesterday about efforts by AACS LA, the entity that controls the AACS copy protection system used in HD-DVD and Blu-ray discs, to stop people from republishing a sixteen-byte cryptographic key that can unlock most existing discs. Much of the action took place at Digg, a site that aggregates Web page recommendations from many people. (At Digg, you can recommend pages on the Web that you find interesting, and Digg will show you the most-recommended pages in various categories.

Digg had received a demand letter from AACS LA, asking Digg to take down links to sites containing the key. After consulting with lawyers, Digg complied, and Digg’s administrators started canceling entries on the site.

Then Digg’s users revolted. As word got around about what Digg was doing, users launched a deluge of submissions to Digg, all mentioning or linking to the key. Digg’s administrators tried to keep up, but submissions showed up faster than the administrators could cancel them. For a while yesterday, the entire front page of Digg – the “hottest” pages according to Digg’s algorithms – consisted of links to the AACS key.

Last night, Digg capitulated to its users. Digg promised to stop removing links to the key, and Digg founder Kevin Rose even posted the key to the site himself. Rose wrote on Digg’s official blog,

In building and shaping the site I’ve always tried to stay as hands on as possible. We’ve always given site moderation (digging/burying) power to the community. Occasionally we step in to remove stories that violate our terms of use (eg. linking to pornography, illegal downloads, racial hate sites, etc.). So today was a difficult day for us. We had to decide whether to remove stories containing a single code based on a cease and desist declaration. We had to make a call, and in our desire to avoid a scenario where Digg would be interrupted or shut down, we decided to comply and remove the stories with the code.

But now, after seeing hundreds of stories and reading thousands of comments, you’ve made it clear. You’d rather see Digg go down fighting than bow down to a bigger company. We hear you, and effective immediately we won’t delete stories or comments containing the code and will deal with whatever the consequences might be.

If we lose, then what the hell, at least we died trying.

This is a remarkable event. Critics of Web 2.0 technologies like Digg often say that users are being exploited, that the “communities” on these sites are shams and the company running the site is really in control. Here, the Digg company found that it doesn’t entirely control the Digg site – if users want something on the site badly enough, they can put it there. If Digg wasn’t going to shut down entirely (or become clogged with postings of the key), it had no choice but to acquiesce and allow links to the key. But Digg went beyond acquiescence, siding with its users against AACS LA, by posting the key itself and practically inviting a lawsuit from AACS LA.

Digg’s motive here probably has more to do with profit and market share than with truth, justice, and the American way. It’s not a coincidence that Digg’s newly discovered values coincide with the desires of its users. Still, the important fact is that users could bend Digg to their will. It turns out that the “government” of Digg’s community gets its power from the consent of the governed. Users of other Web 2.0 sites will surely take note.

avatar

AACS Plays Whack-a-Mole with Extracted Key

The people who control AACS, the copy protection technology used on HD-DVD and Blu-ray discs, are apparently trying to shut down websites that publish a certain 128-bit integer. The number is apparently a “processing key” used in AACS. Together with a suitable computer program, the key allows the decryption of video content on most existing HD-DVD and Blu-ray discs.

I won’t publish the key here but you can spot it all over the Web. It’s a long string starting with “09 F9″.

The key has been published on a few websites for months, but in recent days the AACS “Licensing Authority” (AACS LA) has taken to sending out demand letters to websites that publish the key, claiming that the key is a circumvention technology under the DMCA. News of these demand letters, and the subsequent disappearance of content and whole sites from the Net, has triggered an entirely predictable backlash, with thousands of people reposting the key to their own sites.

The key will inevitably remain available, and AACSLA are just making themselves look silly by trying to suppress it. We’ve seen this script before. The key will show up on T-shirts and in song lyrics. It will be chalked on the sidewalk outside the AACS LA office. And so on.

It’s hard to see the logic in AACS LA’s strategy here. Their end goal is (or should be) to stop unauthorized online distribution of high-def video files ripped from HD-DVD or Blu-ray discs. The files in question are enormous and cumbersome to store and distribute, containing more than a gigabyte of content. If you can’t stop distribution of these huge files, surely there’s no hope of stopping distribution of a little sixteen-byte key, or even of decryption software containing the key. Whatever tactics can stop distribution of the key should be even more effective against distribution of movies.

My guess is that AACS LA miscalculated, thinking that a few demand letters would succeed in suppressing the key. As the key spread, it seemed natural to continue sending letters – to do otherwise would be an admission of defeat. Now the key is spread so widely that there’s no point in sending any more letters.

The next question is whether AACS LA will try to sue somebody who defied a demand letter. There’s no real strategic point to such a suit, but even big organizations act out of spite sometimes.

avatar

Software HD-DVD/Blu-ray Players Updated

The central authority that runs AACS (the anticopying/DRM system used on commercial HD-DVD and Blu-ray discs) announced [April 6, 2007 item] last week the reissue of some software players that can play the discs, “[i]n response to attacks against certain PC-based applications”. The affected applications include WinDVD and probably others.

Recall that analysts had previously extracted from software players a set of decryption keys sufficient to decrypt any disc sold thus far. The authority could have responded to these attacks by blacklisting the affected applications or their decryption keys, which would have limited the effect of the past attacks but would have rendered the affected applications unable to play discs, even for law-abiding customers – that’s too much collateral damage.

To reduce the harm to law-abiding customers, the authority apparently required the affected programs to issue free online updates, where the updates contain new software along with new decryptions keys. This way, customers who download the update will be able to keep playing discs, even though the the software’s old keys won’t work any more.

The attackers’ response is obvious: they’ll try to analyze the new software and extract the new keys. If the software updates changed only the decryption keys, the attackers could just repeat their previous analysis exactly, to get the new keys. To prevent this, the updates will have to restructure the software significantly, in the hope that the attackers will have to start their analysis from scratch.

The need to restructure the software explains why several months expired between the attacks and this response. New keys can be issued quickly, but restructuring software takes time. The studios reportedly postponed some planned disc releases to wait for the software reissue.

It seems inevitable that the attackers will succeed, within a month or so, in extracting keys from the new software. Even if the guts of the new software are totally unlike the old, this time the attackers will be better organized and will know more about how AACS works and how implementations tend to store and manage keys. In short, the attackers’ advantage will be greater than it was last time.

When the attackers manage to extract the new keys, a new round of the game will start. The player software will have to be restructured again so that a new version with new keys can replace the old. Then it will be the attackers’ turn, and the game will continue.

It’s a game that inherently favors the attackers. In my experience, software analysts always beat the obfuscators, if the analysts are willing to work hard, as they are here. Every round of the game, the software authors will have to come up with new and unexpected tricks for restructuring their software – tricks that will have to resist the attackers’ ever-growing suite of analysis tools. And each time the attackers succeed, they’ll be able to decrypt all existing discs.

We can model the economic effect of this game. The key parameter is the attackers’ reaction time, that is, how long it takes the attackers to extract keys from each newly issued version of the player software. If this time is short – say, a few weeks – then the AACS authority won’t benefit much from playing this game, and the authority would be nearly as well off if it simply gave up and let the extracted keys remain valid and the exploited software stay in the field.

My guess is that the attackers will extract keys from the new software within about three weeks of its availability.

avatar

AACS: Slow Start on Traitor Tracing

[Previous posts in this series: 1, 2, 3, 4, 5, 6, 7, 8.]

Alex wrote on Thursday about the next step in the breakdown of AACS, the encryption scheme used on next-gen DVD discs (HD-DVD and Blu-ray): last week a person named Arnezami discovered and published a processing key that apparently can be used to decrypt all existing discs.

We’ve been discussing AACS encryption, on and off, for several weeks now. To review the state of play: the encryption scheme serves two purposes: key distribution and traitor tracing. Key distribution ensures that every player device, except devices that have been blacklisted, can decrypt a disc. Traitor tracing helps the authorities track down which player has been compromised, if key information is leaked. The AACS authorities encode the header information for each disc in such a way that keys are distributed properly and traitor tracing can occur.

Or that’s the theory, at least. In practice, the authorities are making very little use of the traitor tracing facilities. We’re not sure why this is. They surely have an interest in tracing traitors, and failing to encode discs to facilitate traitor tracing is just a lost opportunity.

The main traitor tracing feature is the so-called sequence key mechanism. This mechanism is not used at all on any of the discs we have seen, nor have we seen any reports of its use.

A secondary traitor tracing feature involves the use of processing keys. Each player device has a unique set of a few hundred device keys, from which it can calculate a few billion different processing keys. Each processing key is computable by only a fraction of the players in the world. Each disc’s headers include a list of the processing keys that can decrypt the disc; any one of the listed processing keys is sufficient to decrypt the disc.

For some reason, all existing discs seem to list the same set of 512 processing keys. Each player will be able to compute exactly one of these processing keys. So when Arnezami leaked a processing key, the authorities could deduce that he must have extracted it from a player that knew that particular processing key. In other words, it narrowed down the identity of his player to about 0.2% of all possible players.

Because all existing discs use the same set of processing keys, the processing key leaked by Arnezami can decrypt any existing disc. Had the authorities used different sets of processing keys on different discs – which was perfectly feasible – then a single processing key would not have unlocked so many discs. Arnezami would have had to extract and publish many processing keys, which would have made his job more difficult, and would have further narrowed down which player he had.

The ability to use different processing key sets on different discs is part of the AACS traitor tracing facility. In failing to do this, the authorities once again failed to use the traitor tracing mechanisms at their disposal.

Why aren’t the authorities working as hard as they can to traitor-trace compromised players? Sure, the sequence key and processing key mechanisms are a bit complex, but if the authorities weren’t going to use these mechanisms, then why would they have gone to the difficulty and expense of designing them and requiring all players to implement them? It’s a mystery to us.

avatar

AACS: A Tale of Three Keys

[Previous posts in this series: 1, 2, 3, 4, 5, 6, 7.]

This week brings further developments in the gradual meltdown of AACS (the encryption scheme used for HD-DVD and Blu-Ray discs). Last Sunday, a member of the Doom9 forum, writing under the pseudonym Arnezami, managed to extract a “processing key” from an HD-DVD player application. Arnezami says that this processing key can be used to decrypt all existing HD-DVD and Blu-Ray discs. Though currently this attack is more powerful than previous breaks, which focused on a different kind of key, its usefulness will probably diminish as AACS implementers adapt.

To explain what’s at stake, we need to describe a few more details about the way AACS manages keys. Recall that AACS player applications and devices are assigned secret device keys. Devices can use these keys to calculate a much larger set of keys called processing keys. Each AACS movie is encrypted with a unique title key, and several copies of the title key, encrypted with different processing keys, are stored on the disc. To play a disc, a device figures out which of the encrypted title keys it has the ability to decrypt. Then it uses its device keys to compute the necessary processing key, uses the processing key to decrypt the title key, and uses the title key to extract the content.

These three kinds of keys have different security properties that make them more or less valuable to attackers. Device keys are the most useful. If you know the device keys for a player, you can decrypt any disc that the player can. Title keys are the least useful, because each title key works only for a single movie. (Attacks on any of these keys will be limited by disc producers’ ability to blacklist compromised players. If they can determine which device has been compromised, they can change future discs so that the broken player, or its leaked device keys, won’t be able to decrypt them.)

To date, no device keys have been compromised. All successful breaks, before Arnezami, have involved extracting title keys from player software. These attacks are rather cumbersome–before non-technical users can decrypt a movie, somebody with the means to extract the title key needs to obtain a copy of the disc and publish its title key online. Multiple web sites for sharing title keys have been deployed, but these are susceptible to legal and technical threats.

So is the new attack on the processing key comparable to learning a venerable device key or a lowly title key? The answer is that, due to a strange quirk in the way the processing keys used on existing discs were selected, the key Arnezami published apparently can be used to decrypt every HD-DVD or Blu-Ray disc on the market. For the time being, knowing Arnezami’s processing key is as powerful as knowing a device key. For instance, someone could use the processing key to build a player or ripper that is able to treat all current discs as if they were unencrypted, without relying on online services or waiting for other users to extract title keys.

Yet this power will not last long. For future discs, processing key attacks will probably be no more valuable than title key attacks, working only on a single disc or a few discs at most. We’ll explain why in tomorrow’s post.

avatar

AACS: Modeling the Battle

[Posts in this series: 1, 2, 3, 4, 5, 6, 7.]

By this point in our series on AACS (the encryption scheme used in HD-DVD and Blu-ray) it should be clear that AACS creates a nontrivial strategic game between the AACS central authority (representing the movie studios) and the attackers who want to defeat AACS. Today I want to sketch a model of this game and talk about who is likely to win.

First, let’s talk about what each party is trying to achieve. The central authority wants to maximize movie studio revenue. More precisely, they’re concerned with the portion of revenue that is due to AACS protection. We’ll call this the Marginal Value of Protection (MVP): the revenue they would get if AACS were impossible to defeat, minus the revenue they would get if AACS had no effect at all. The authority’s goal is to maximize the fraction of MVP that the studios can capture.

In practice, MVP might be negative. AACS makes a disc less useful to honest consumers, thereby reducing consumer demand for discs, which hurts studio revenue. (For example: Alex and I can’t play our own HD-DVD discs on our computers, because the AACS rules don’t like our computers’ video cards. The only way for us to watch these discs on our equipment would be to defeat AACS. (Being researchers, we want to analyze the discs rather than watch them, but normal people would insist on watching.)) If this revenue reduction outweighs any revenue increase due to frustrating infringement, MVP will be negative. But of course if MVP is negative then a rational studio will release its discs without AACS encryption; so we will assume for analytic purposes that MVP is positive.

We’ll assume there is a single attacker, or equivalently that multiple attackers coordinate their actions. The attacker’s motive is tricky to model but we’ll assume for now that the attacker is directly opposed to the authority, so the attacker wants to minimize the fraction of MVP that the studios can capture.

We’ll assume the studios release discs at a constant rate, and that the MVP from a disc is highest when the disc is first released and then declines exponentially, with time constant L. (That is, MVP for a disc is proportional to exp(-(t-t0)/L), where t0 is the disc’s release date.) Most of the MVP from a disc will be generated in the first L days after its release.

We’ll assume that the attacker can compromise a new player device every C days on average. We’ll model this as a Poisson process, so that the likelihood of compromising a new device is the same every day, or equivalently the time between compromises is exponentially distributed with mean C.

Whenever the attacker has a compromised device, he has the option of using that device to nullify the MVP from any set of existing discs. (He does this by ripping and redistributing the discs’ content or the keys needed to decrypt that content.) But once the attacker uses a compromised device this way, the authority gets the ability to blacklist that compromised device so that the attacker cannot use it to nullify MVP from any future discs.

Okay, we’ve written down the rules of the game. The next step – I’ll spare you the gory details – is to translate the rules into equations and solve the equations to find the optimal strategy for each side and the outcome of the game, that is, the fraction of MVP the studios will get, assuming both sides play optimally. The result will depend on two parameters: L, the commercial lifetime of a disc, and C, the time between player compromises.

It turns out that the attacker’s best strategy is to withhold any newly discovered compromise until a “release window” of size R has passed since the last time the authority blacklisted a player. (R depends in a complicated way on L and C.) Once the release window has passed, the attacker will use the compromise aggressively and the authority will then blacklist the compromised player, which essentially starts the game over. The studio collects revenue during the release window, and sometimes beyond the release window when the attacker gets unlucky and takes a long time to find another compromise.

The fraction of MVP collected by the studio turns out to be approximately C/(C+L). When C is much smaller than L, the studio loses most of the MVP, because the attacker compromises players frequently so the attacker will nullify a disc’s MVP early in the disc’s commercial lifetime. But when C is much bigger than L, a disc will be able to collect most of its MVP before the attacker can find a compromise.

To predict the game’s outcome, then, we need to know the ratio of C (the time needed to compromise a player) to L (the commercial lifetime of a disc). Unfortunately we don’t have good data to estimate C and L. My guess, though, is that C will be considerably less than L in the long run. I’d expect C to be measured in weeks and L in months. If that’s right, it’s bad news for AACS.