December 22, 2024

Election Day; More Unguarded Voting Machines

It’s Election Day in New Jersey. As usual, I visited several polling places in Princeton over the last few days, looking for unguarded voting machines. It’s been well demonstrated that a bad actor who can get physical access to a New Jersey voting machine can modify its behavior to steal votes, so an unguarded voting machine is a vulnerable voting machine.

This time I visited six polling places. What did I find?

The good news — and there was a little — is that in one of the six polling places, the machines were properly secured. I’m not sure where the machines were, but I know that they were not visible anywhere in the accessible areas of the building. Maybe the machines were locked in a storage room, or maybe they hadn’t been delivered yet, but anyway they were probably safe. This is the first time I have ever found a local polling place, the night before the election, with properly secured voting machines.

At the other five polling places, things weren’t so good. At three places, the machines were unguarded in an area open to the public. I walked right up to them and had private time with them. In two other places, the machines were visible from outside the building and protected only by an outside door with an easily defeated lock. I didn’t defeat the locks myself — I wasn’t going to cross that line — but I’ll bet you could have opened them quickly with tools you probably have in your car.

The final scorecard: ten machines totally unprotected, eight machines poorly protected, two machines well-protected. That’s an improvement, but then again any protection at all would have been an improvement. We still have a long way to go.

Sequoia Announces Voting System with Published Code

Sequoia Voting Systems, one of the major e-voting companies, announced Tuesday that it will publish all of the source code for its forthcoming Frontier product. This is great news–an important step toward the kind of transparency that is necessary to make today’s voting systems trustworthy.

To be clear, this will not be a fully open source system, because it won’t give users the right to modify and redistribute the software. But it will be open in a very important sense, because everyone will be free to inspect, analyze, and discuss the code.

Significantly, the promise to publish code covers all of the systems involved in running the election and reporting results, “including precinct and central count digital optical scan tabulators, a robust election management and ballot preparation system, and tally, tabulation, and reporting applications”. I’m sure the research community will be eager to study this code.

The trend toward publishing election system source code has been building over the last few years. Security experts have long argued that public scrutiny tends to increase security, and is one of the best ways to justify public trust in a system. Independent studies of major voting vendors’ source code have found code quality to be disappointing at best, and vendors’ all-out resistance to any disclosure has eroded confidence further. Add to this an increasing number of independent open-source voting systems, and secret voting technologies start to look less and less viable, as the public starts insisting that longstanding principles of election transparency be extended to election technology. In short, the time had come for this step.

Still, Sequoia deserves a lot of credit for being the first major vendor to open its technology. How long until the other major vendors follow suit?

Finnish Court Orders Re-Vote After E-Voting Snafu

The Supreme Administrative Court of Finland has ruled that three municipal elections, the first in Finland to use electronic voting, must be redone because of voting machine problems. (English summary; ruling in Finnish)

The troubles started with a usability problem, which caused 232 voters (about 2% of voters) to leave the voting booth without fully casting their ballots. Electronic Frontiers Finland explains what went wrong:

It seems that the system required the voter to insert a smart card to identify the voter, type in their selected candidate number, then press “ok”, check the candidate details on the screen, and then press “ok” again. Some voters did not press “ok” for the second time, but instead removed their smart card from the voting terminal prematurely, causing their ballots not to be cast.

This usability issue was exacerbated by Ministry of Justice instructions, which specifically said that in order to cancel the voting process, the user should click on “cancel” and after that, remove the smart card. Thus, some voters did not realise that their vote had not been registered.

If you want to see what this looks like for a voter, check out the online demo of the voting process, from the Finnish Ministry of Justice (in English).

Well designed voting systems tend to have a prominent, clearly labeled control or action that the voter uses to officially cast his or her vote. This might be a big red “CAST VOTE” button. The Finnish system mistakenly used the same “OK” button used previously in the process, making voter mistakes more likely. Adding to the problem, the voter’s smart card was protruding from the front of the machine, making it all too easy for a voter to grab the card and walk away.

No voting machine can stop a “fleeing voter” scenario, where a voter simply walks away during the voting process (we conventionally say “fleeing” even if the voter leaves by mistake), but some systems are much better than others in this respect. Diebold’s touchscreen voting machines, for all their faults, got this design element right, pulling the voter’s smart card all of the way into the machine and ejecting it only when the voter was supposed to leave — thus turning the voter’s desire to return the smart card into a countermeasure against premature voter departure, rather than a cause of it. (ATM machines often use this same trick of holding the card inside the machine to stop the user from grabbing the card and walking away at the wrong time.) Some older lever machines use an even simpler method against fleeing voters: the same big red handle that casts the ballot also opens the curtains so the voter can leave.

I’d be curious to know what the rules are about fleeing voters in Finland. I know that New Jersey procedures say that if a voter leaves without performing the final step of pushing the “Cast Vote” button, poll workers are supposed to push the button on the voter’s behalf (without looking at the voter’s choices). Crucially, the design of the New Jersey voting machine (for all its faults) makes it almost certain that such a non-cast ballot will be discovered promptly — the machine makes a noise when the ballot is cast, and the machine will complain if the poll worker tries to enable the next voter’s ballot before the previous voter’s ballot has been cast.

It seems likely that the Finnish machine, in addition to its usability problems that led to fleeing voters, had other design/process problems that made a non-completed ballot less noticeable to poll workers. (I don’t know this for sure; the answer isn’t in any English-language document I have seen.)

Fortunately, the damage was not as bad as it might have been, because the e-voting system was used in only three municipalities, as a pilot program, rather than nationwide. Presumably, nationwide use of the flawed system is now unlikely.

NJ Voting-machine Trial: Defense Witnesses

I’ve previously summarized my own testimony and other plaintiffs’ witnesses’ testimony in the New Jersey voting machines trial, Gusciora v. Corzine.

The defendant is the State of New Jersey (Governor and Secretary of State). The defense case comprised the following witnesses:

Defense witness James Clayton, the Ocean County voting machine warehouse supervisor, is a well-intentioned official who tries to have good procedures to secure the Ocean County voting machines. Still, it became apparent in his testimony that there are security gaps regarding transport of the machines, keys to the machines, and security at polling places before and after election day.

Richard Woodbridge is a patent attorney who has chaired the NJ Voting Machine Examination Committee for more than 20 years. It’s not clear why the defendants called him as a witness, because they conducted only a 15-minute direct examination in which he didn’t say much. On cross-examination he confirmed that his committee does not conduct an independent analysis of software and does not consult with any computer security experts.

Robert Giles, Director of Elections of the State of New Jersey, testified about experimenting with different forms of seals and locks that New Jersey might apply to its AVC Advantage voting machines. On cross examination, it became clear that there is no rhyme or reason in how the State is choosing seals and other security measures; that they’re not getting expert advice on these matters. Also he admitted that there are no statewide control or even supervision of the procedures that counties use to safeguard the voting machines, the results cartridges, keys, and so on. He confirmed that several counties use the cartridges as the official tally, in preference to paper printouts witnessed and signed (at the close of the polls) by election workers.

Edwin Smith testified as an expert witness for the State defendants. Mr. Smith is vice-president and part owner of Sequoia Voting Systems. He stands to gain financially depending on the verdict in this trial: NJ represents 20% of Sequoia’s market, and his bonuses depend on sales. Mr. Smith testified to rebut my testimony about fake Z80 processors. (Wayne Wolf, who testified for plaintiffs about fake Z80s, testified after Mr. Smith, as a rebuttal witness.) Even though Mr. Smith repeatedly referred to replacement of Z80s as “science fiction”, he then offered lengthy testimony about methods to try to detect fake Z80s. This gave credence to the fact that fraudulent CPUs are not only a possibility but a real threat.

Mr. Smith also confirmed that it is a security risk to connect WinEds computers (that prepare electronic ballot definitions and tabulate results) to the Internet, and that those counties in NJ that do so are making a mistake.

Paul Terwilliger testified as a witness for the defense. Mr. Terwilliger is a longtime employee and/or contractor for Sequoia, who has had primary responsibility over the development of the AVC Advantage for the last 15 years. Mr. Terwilliger admitted that in 2003 the WIPO found that he’d acted in bad faith by cybersquatting on the Diebold.com domain name at the request of Sequoia. Mr. Terwilliger testified that it is indeed possible to program an FPGA to make a “fake Z80” that cheats in elections. But, he said, there are some methods for detecting FPGAs installed on AVC Advantage voting machines instead of the legitimate (Some of these methods are impractical, others are ineffective, others are speculative; see Wayne Wolf’s report.) This testimony had the effect of underscoring the seriousness of the fake-Z80 threat.

Originally the defendants were going to rely on Professor Michael Shamos of Carnegie Mellon University as their only expert witness. But the Court never recognized him as an expert witness. The Court ruled that he could not testify about the security and accuracy of the AVC Advantage, because he had not offered an opinion about security and accuracy in his expert report or his deposition.

The Court did permit him to testify in general terms. He said that in real life, we have no proof that a “hacked election” has ever occurred; and that in real life, such a hack would somehow come to light. He offered no studies that support this claim.

Professor Shamos attempted to cast doubt in the Court’s mind about the need for software independence, and disparaging precinct-based optical scan voting (PCOS). But he offered no concrete examples and no studies regarding PCOS.

On many issues, Professor Shamos agreed with the plaintiffs’ expert: it’s straightforward to replace a ROM chip, plastic-strap seals provide only a veneer of protection, the transformed machine can cheat, and pre-election logic-and-accuracy testing would be ineffective in detecting the fraud. He does not dispute many of the bugs and user-interface design flaws that we found, and recommends that those should be fixed.

Professor Shamos admitted that he is alone among computer scientists in his support of paperless DREs. He tried to claim that other computer scientists such as Ted Selker, Douglas W. Jones, Joseph Lorenzo Hall also supported paperless DREs by saying they supported parallel testing–implying that those scientists would consider paperless DREs to be secure enough with parallel testing–but during cross-examination he backed off a bit from this claim. (In fact, as I testified in my rebuttal testimony, Drs. Jones and Hall both consider PCOS to have substantially stronger security, and to be substantially better overall, than DREs with parallel testing.)

Parallel testing is Professor Shamos’s proposed method to detect fraudulent software in electronic voting machines. In order to catch software that cheats only on election day, Professor Shamos proposes to cordon off a machine and cast a known list of test votes on it all day. He said that no state has ever implemented a satisfactory parallel testing protocol, however.

Summary of the defendant’s case

One of the plaintiffs’ most important claims–which they demonstrated on video to the Court–is that one can replace the firmware of the AVC Advantage voting machine with fraudulent firmware that changes votes before the polls close. No defense witness contradicted this. To the extent that the defense put up a case, it hinged on proposed methods for detecting such fraudulent firmware, or on proposed methods for slowing down the attack by putting tamper-evident seals in the way. On both of these issues, defense witnesses contradicted each other, and plaintiffs presented rebuttal witnesses.

NJ Voting-machine trial: Plaintiffs' witnesses

Both sides in the NJ voting-machines lawsuit, Gusciora v. Corzine, have finished presenting their witnesses. Briefs (in which each side presents proposed conclusions) are due June 15 (plaintiffs) and July 15 (defendants), then the Court will eventually issue a decision.

In summary, the plaintiffs argue that New Jersey’s voting machines (Sequoia AVC Advantage) can’t be trusted to count the votes, because they’re so easily hacked to make them cheat. Thus, using them is unconstitutional (under the NJ state constitution), and the machines must be abandoned in favor of a method that provides software independence, for example precinct-count optical-scan voting.

The plaintiffs’s first witness was Stephanie Harris, who testified for half an hour about her experience voting on an AVC Advantage where the pollworker asked her to go back and recast her ballot for a total of three or four times, because the pollworker wasn’t sure that it registered. Ms. Harris testified that to this day she’s not sure whether her vote registered 0 times, or 1, or 2, or 3, or 4.

I testified second, as I’ve described. I testified about many things, but the most important is that you can easily replace the firmware of an AVC Advantage voting machine to make it cheat in elections (but not cheat when it’s being tested outside of elections).

The third witness was Ed Felten, who testified for about an hour that on several different occasions he found unattended voting machines in Princeton, on weekends before elections, and he took pictures. (Of course, as the Court was well aware by this time in the trial, a hacker could take advantage of an unattended voting machine to install vote-stealing firmware.) Ed wrote about this on Freedom-to-Tinker here, here, and here; he brought all those pictures with him to show the Court.

Next were Elisa Gentile, Hudson County voting machine warehouse supervisor, and Daryl Mahoney, Bergen County voting machine warehouse supervisor. Mr. Mahoney also serves on the NJ Voting Machine Examination committee (which recommends certification of voting machines for use in NJ). These witnesses were originally proposed by the defense, but in their depositions before trial, they said things so helpful to the plaintiffs that the plaintiffs called them instead! They testified about lax security with regard to transport and storage of voting machines, lax handling of keys to the voting machines, and no security at polling places where the machines are delivered several days before the election. They didn’t seem to have a clue about information security and how it affects the integrity of elections conducted using computers.

Next the plaintiffs called County Clerk of Union County, Joanne Rajoppi, who had the sophistication to notice a discrepancy in the results report by AVC Advantage voting machine, the integrity to alert the newspapers and the public, and the courage to testify about all the things that have been going wrong with AVC Advantage voting machines in her county. Ms. Rajoppi testified about (among other things):

  • Soon after the February 5, 2008 Super Tuesday presidential primary, she noticed inconsistencies in AVC Advantage results-reports printouts (and cartridge data): the number of votes in some primaries was higher than the number of voters. (See Section 56 of my report, or Ed Felten’s analysis on Freedom-to-Tinker)
  • She brought this to the attention of State election officials, but the State officials made no move at all to investigate the problem. She arranged for Professor Felten of Princeton University to examine the Union County voting machines, but she stopped when she was threatened with a lawsuit by Edwin Smith, vice president of Sequoia Voting Systems.
  • In a different election, the Sequoia AVC voting system refused to accept a candidate’s name with a tilde over the ñ. Sequoia technicians produced a hand-edited ballot definition file; she was uneasy about turning control of the ballot definition file over to Sequoia.
  • Results Cartridges get locked in the machines sometimes (when pollworkers forget to bring them back from the polling places for tabulation). (During this time they are vulnerable to vote-changing manipulation; see Section 40 of my report.)
  • Union County considers the vote data in the cartridges to be the official election results, not the vote data printed out at the close of the polls (and then signed by witnesses). (This is unwise for several reasons; see Sections 40 and 57 of my report.)

The defendant (the State of New Jersey) presented several witnesses. I’ll summarize them in my next post. After the defense witnesses, the plaintiffs called rebuttal witnesses.

Plaintiffs’ rebuttal witness Roger Johnston is an expert on physical security at the U.S. government’s Argonne National Laboratory (testifying as a pro bono expert on his own behalf, not representing the views of the U.S. government). Dr. Johnston testified that supposedly tamper-evident seals and tape can be defeated; that it does no good to have seals without a rigorous protocol for inspecting them (which NJ does not have); that such a protocol (and the training it requires) would be very expensive to implement and execute; that AVC Advantage’s design makes it impractical to really secure using seals; and that in general New Jersey’s “security culture” and its proposed methods for securing these voting machines are incoherent and dysfunctional. He demonstrated for the Court one defeat of each seal, and testified about other defeats of these kinds of seals.

The last plaintiffs’ witness was Wayne Wolf, professor of Electrical Engineering at Georgia Tech. Professor Wolf testified (and wrote in his expert report) that it’s straightforward to build a fake computer processor chip and install it to replace the Z80 computer chip in the AVC Advantage voting machine. (See also Section 12 of my report.) This fake chip could (from time to time) ignore the instructions in the AVC Advantage ROM memory about how to add up votes, and instead transfer votes from one candidate to another. It can cheat just like the ROM-replacement hack that I testified about, but it can’t be detected by examining the ROM chips. Professor Wolf also testified about the difficulty (or impossibility) of detecting fake Z80 chips by some of the methods proposed by defense witnesses.